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Structural reliability techniques can be employed to evaluate the fatigue 

performance of fracture-critical members in steel bridges.  In this dissertation, two 

fatigue reliability formulations that can be applied for most details in steel bridges are 

developed.  For details classified according to AASHTO fatigue categories, a limit state 

function related to the number of stress cycles leading to failure based on Miner’s rule is 

used; for details not classified according to AASHTO fatigue categories, a limit state 

function based on linear elastic fracture mechanics and expressed in terms of crack size 

and growth rate is employed. 

With the application of fatigue reliability analysis, a procedure for inspection 

scheduling of steel bridges is developed to yield the optimal (most economical) 

inspection strategy that meets an acceptable safety level through the planned service life.  

This inspection scheduling problem is modeled as an optimization problem with an 

objective function that includes the total expected cost of inspection, repair, and failure 
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formulated using an event tree approach, with appropriate constraints on the interval 

between inspections, and a specified minimum acceptable (target) safety level.  With the 

help of several illustrations, it is shown that an optimal inspection scheduling plan can 

thus be developed for any specified fatigue details or fracture-critical sections in steel 

bridges. 

A second optimal inspection scheduling procedure is formulated that takes into 

consideration crack detectability (or quality) of alternative nondestructive inspection 

techniques.  This procedure based on Monte Carlo simulation of crack growth curves 

yields an optimal inspection technique and associated schedule for a given fracture-

critical member in a steel bridge for minimum cost and a target safety level while also 

taking into account probability of detection (POD) data for candidate nondestructive 

inspection techniques. 

Comparisons between the reliability-based procedure and the POD-based 

procedure for optimal inspection scheduling are discussed.  Both scheduling strategies, 

when contrasted with ad hoc periodic inspection programs for steel bridges, are 

recommended because they are rational approaches that consider the actual fatigue 

reliability of the bridge member and account for economy as well as safety. 
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Chapter 1:  INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Fatigue is one of the main forms of deterioration and can, potentially, be a failure 

mode in metal structures and mechanical systems.  The American Society of Civil 

Engineers (ASCE) Committee on Fatigue and Fracture Reliability (1982) emphasized 

that 80-90% of failures in metallic structures are related to fatigue and fracture.  In steel 

bridge engineering, fatigue problems caught the public’s attention due to the unexpected 

collapse and fracture of the King’s Bridge in Melbourne, Australia (1962), the Point 

Pleasant Bridge in West Virginia (1967) and the Yellow Mill Pond Bridge in Connecticut 

(1976).  The failures of these bridges were all related to fatigue and caused great losses.  

Hence, in the United States, extensive fatigue tests were carried out in the 1960s and 

1970s for various categories of details in steel bridges to establish stress range-fatigue life 

(S-N) relationships that form the basis for fatigue design.  The derived S-N curves have 

been adopted in the present AASHTO fatigue specifications, and have become the 

foundation for the commonly used deterministic approach for estimating fatigue lives for 

details in steel bridges.  It should be noted that significant variability is seen in the 

acquired fatigue life data used to establish the S-N curve for each AASHTO fatigue 

category.  In fact, because of this variability, each AASHTO S-N curve corresponds to a 

conservative level where there is a 95% confidence of survival of at least 95% of all 

details in the corresponding category.  It is not surprising too that the fatigue life 

evaluation of a detail based on the AASHTO S-N curves can often be considerably 

different from the actual realized fatigue life.  In addition, the randomness of the nature 

of vehicle-induced fatigue loading, the variability in the make-up of the truck traffic, the 
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different environmental conditions as well as several other external factors increase the 

uncertainty in predictions of fatigue life. 

The fatigue life calculation method proposed by Moses et al. (1987) and adopted 

in the AASHTO Guide Specifications for Fatigue Evaluation of Existing Steel Bridges 

(1990) is the most prevalent method of fatigue life evaluation in bridge engineering in the 

United States today.  However, experience has shown that this fatigue life calculation 

method based on the AASHTO S-N curves often yields a conservative evaluation of the 

fatigue life for a detail.  Combined with Paris’ law, the linear elastic fracture mechanics 

(LEFM) method can be employed to develop an alternative deterministic approach for 

fatigue life evaluation.  Due to the uncertainties in initial crack size estimation, material 

properties, detail geometry modeling, truck traffic, fatigue loading and other factors, the 

LEFM-based deterministic approach also has its own limitations in fatigue life 

evaluation.  In summary, fatigue is a phenomenon that is very complex and subject to a 

great deal of uncertainty.  The uncertainties introduced due to external factors, such as 

fatigue loading and environmental conditions, and internal factors such as the fatigue 

capacity of details make deterministic fatigue analyses less reliable in estimating the 

fatigue lives of details in steel bridges. 

A program of regular inspection of bridges is the most effective way of 

preventing details susceptible to fatigue from bringing about failures.  Such a program, 

though, demands experience and knowledge of the various inspection techniques and of 

the fatigue behavior of the detail in question.  Deterministic fatigue approaches can 

provide only very limited information for cost-effective bridge inspections and 

scheduling strategies.  In addition to actually aiding in the calculation of the fatigue life 

of a detail, the fatigue reliability approach can provide a useful index which quantifies the 

safety level of the detail.  This index accounts for external and internal uncertainties that 
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affect the behavior of the detail and its likelihood to bring about failure due to fatigue.  

Fatigue reliability is modeled based on well-established structural reliability theories, and 

it has been successfully used in offshore applications to estimate the risk of fatigue failure 

of offshore structures (especially steel jacket platforms, Faber et al. (1992b)).  

Randomness and/or variability in loading and environmental stressors affecting offshore 

structures have also been accounted for when needed – some considerations have 

included randomness in wave loading and in the corrosive environment, variability in 

material properties and behavior of the structural system, variability in crack propagation 

at welds and in stress concentration, etc.  The advantage of interpreting fatigue 

performance using reliability is that reliability is easily converted to or expressed in terms 

of the probability of fatigue failure. This then provides a useful framework for decision-

making issues for bridge maintenance and inspection scheduling where safety is an 

important consideration. 

For steel bridges, the Federal Highway Administration (FHWA) requires periodic 

inspections (every two years for fracture-critical inspections) to prevent fatigue failures.  

However, every steel bridge has its own specific structural type, geometry, design, and 

traffic conditions, and these characteristics may cause different fatigue performance for 

different bridges.  In addition, even on the same bridge, details with different fatigue 

categorizations and different levels of stress ranges might experience different degrees of 

fatigue in the field.  Therefore, due to these differences, the two-year periodic or any 

other fixed-interval inspections may not be adequate for the fatigue damage accumulation 

of all types of details in steel bridges.  For example, some extremely fracture-critical 

members may require more frequent inspections (i.e. shorter intervals between 

inspections) than typical details, but some less critical details may require even fewer 

inspections than are implied by the two-year inspection schedule.  Frequent inspections 
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increase the cost of bridge maintenance especially when expensive fracture-critical 

inspection methods are employed.  From the owner’s point of view, bridge safety is the 

first priority, and the limited bridge maintenance budget needs to be effectively managed.  

It is impossible and economically infeasible to perform frequent inspections for all 

fracture-critical members.  The trade-off between bridge safety and cost of inspections 

for a steel bridge is an important issue.  Two systematic methods for inspection 

scheduling, which are able to yield the most economical inspection strategy and at the 

same time guarantee an acceptable safety level through the planned service life for steel 

bridges are presented in this dissertation. 

 

1.2 RESEARCH OBJECTIVES AND SCOPE 

There are two main objectives in this research.  The first is to apply fatigue 

reliability analysis techniques to assess the performance of steel bridges that are subject 

to loading that could lead to fatigue failure.  Then, with the help of a fatigue reliability 

index or measure that indicates the safety level of the specific detail on the bridge, our 

objective is to propose inspection schedules to minimize costs and maintain target safety 

levels.  To meet this objective, bridge-specific and loading parameters such as material 

properties, stress ranges, crack types, crack sizes, crack geometry, etc. need to be well 

understood because they are an integral part of the overall reliability analysis.  In this 

dissertation, two fatigue reliability approaches are demonstrated: the AASHTO approach 

and the LEFM approach.  For details classified according to AASHTO fatigue 

categories, the AASHTO approach is used to evaluate fatigue reliability.  A limit state 

function related to the number of stress cycles leading to failure based on Miner’s rule is 

applied.  For non-AASHTO type details, a limit state function related to crack size is 

employed in a LEFM approach for estimating fatigue reliability.  In contrast with the 
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limited calculations of only remaining life in a deterministic approach, with a 

probabilistic approach, the derived fatigue reliability of a detail not only can be taken as a 

safety index for that detail, but it also can be applied in inspection scheduling for the 

detail. 

The second main objective of this research is to develop a rational procedure that 

can be employed to yield the most economic inspection strategy and guarantee the safety 

of steel bridges against failure due to fatigue.  Based on the fatigue reliability estimated 

by the AASHTO or the LEFM approaches and the assumption of ideal inspection quality, 

the scheduling of inspections can be modeled as an optimization problem with 

appropriate constraints on inspection intervals and on safety over the service life.  The 

optimal schedule ensures that the fatigue reliability of the selected detail will be above 

the target reliability level during the service life and, at the same time, yields the lowest 

total cost among all possible inspection schedules.  To consider the effect that imperfect 

inspection quality can have on scheduling of inspections, an alternative method based on 

the Probability of Detection (POD) of the chosen Nondestructive Testing (NDT) 

procedure for inspection is also proposed to help select both the optimal NDT procedure 

and the associated inspection schedule for details in steel bridges. 

The research results presented in this dissertation focus on vehicle-induced high-

cycle fatigue (HCF) problems in steel bridges.  The goal is to find reliability-based 

solutions for fatigue evaluation and inspection planning.  Fatigue is the only failure 

mode considered in this research, and failure in steel bridges due to other effects such as 

yielding (due to overloads), buckling, corrosion, and vehicular collision are not included.  

Vehicle passage, especially truck passage, on the bridges is assumed to be the only source 

of fatigue loading considered in this study.  The details selected for the optimal 

inspection scheduling in this study are located in fracture-critical members meaning that 
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their failure would result in serious damage and consequences.  Though this dissertation 

discusses only fatigue-related safety evaluations and inspection planning, the 

methodology proposed may be easily applied to other structural problems as well where 

damage accumulation of deterioration in performance occurs with time. 

 

1.3 ORGANIZATION 

The dissertation is composed of seven chapters that are organized as follows. 

Chapter 1 serves as an introduction to the study and provides the background, 

problem description, and the scope and objectives of this research. 

Chapter 2 reviews the literature relevant to this research and briefly introduces 

structural reliability theory.  Numerical procedures used in the probabilistic structural 

reliability approaches as well as in the deterministic fatigue approaches are discussed in 

order to understand how these approaches may be used in evaluating the performance of 

steel bridges against fatigue failure. 

Chapter 3 describes the methods employed for modeling fatigue loads on steel 

bridges.  These methods include stress spectrum analysis, assumed distribution analysis, 

and fatigue truck analysis.  The objectives of all these methods are to derive equivalent 

stress ranges for the detail of interest in a steel bridge.  The methods present alternative 

approaches to characterize the variability in the fatigue loading.  The developed 

equivalent stress range is required in subsequent fatigue reliability analysis. 

Chapter 4 presents two methods for evaluating fatigue reliability for fracture-

critical members in steel bridges: the AASHTO fatigue reliability approach and the 

LEFM fatigue reliability approach.  Based on statistical data from the AASHTO S-N 

curves, the AASHTO approach is proposed for estimating the fatigue reliability of all 

structural details that are classified according to the AASHTO fatigue categories.  The 
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LEFM approach, derived by using Paris’ law and a linear elastic fracture mechanics 

approach, is applicable for the fatigue reliability evaluations of all non-AASHTO type 

details (i.e., details not explicitly classified according to AASHTO categories). 

Chapter 5 presents a reliability-based scheduling procedure for establishing 

schedules for fatigue inspections.  By setting a target safety level and applying structural 

reliability methods, the planning of fatigue inspections for a given steel bridge detail over 

its service life becomes an optimization problem of searching for a set of feasible, non-

uniform inspection intervals that can yield the minimum total cost and still meet the 

necessary safety requirements.  Ideal inspection quality is assumed in this optimal 

inspection scheduling approach. 

Chapter 6 provides an alternative probabilistic approach for selecting both the 

optimal nondestructive inspection (NDI) technique and associated inspection schedule for 

a given detail in a steel bridge when the (imperfect) quality of each candidate NDI 

technique is considered.  Inspection quality is explicitly modeled in this approach. 

Chapter 7 summarizes the key findings from this research study and after some 

discussion about the results and some concluding remarks; suggestions for future work in 

related areas are presented. 
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Chapter 2:  LITERATURE REVIEW AND BACKGROUND ON 
METHODS FOR FATIGUE ANALYSIS 

In this chapter, a literature review of fatigue reliability analysis and reliability-

based inspection scheduling methods is presented.  A general background on 

probabilistic methods used in structural reliability theory as well as on more conventional 

deterministic analyses is presented since both these alternative approaches are used for 

fatigue analysis and are employed extensively in this research. 

 

2.1 LITERATURE REVIEW 

Fatigue reliability analysis and reliability-based inspection scheduling methods 

have been widely applied in the offshore industry to address fatigue problems that occur 

especially for steel jacket platforms (Faber et al. (1992b)).  Numerous publications and 

research studies have addressed these fatigue-related issues in the offshore area.  In 

contrast, fatigue reliability analysis and reliability-based fatigue inspection scheduling for 

steel bridge maintenance are relatively new research areas.  Some of the more 

significant publications in the field of reliability-based optimal inspection scheduling for 

fatigue are reviewed in the following sections. 

 

2.1.1 Fatigue Reliability Analysis 

In conventional fatigue analysis, two deterministic approaches are commonly 

employed for fatigue life evaluations.  The well-known Miner’s rule of S-N curve 

approach relating stress ranges (S) to the number of cycles (N) to failure was developed 

more than fifty years ago (Miner, 1945).  This was later followed by the linear elastic 

fracture mechanics (LEFM) approach that accounts for loading condition and geometry 
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around a crack tip in a crack growth rate formulation used to estimate fatigue life (Paris 

and Erdogan, 1963).  In probabilistic fatigue, too, these two approaches (using S-N 

curves or LEFM) may be used along with structural reliability theory to evaluate different 

types of components or details for fatigue failure. 

Tang and Yao (1972) published one of the earliest papers on fatigue reliability 

analysis for structures.  The analysis method they proposed was a simple approach 

based on Miner’s rule in which the number of stress cycles leading to fatigue under 

various stress levels was treated as a random variable.  This permitted calculations of 

the probability of fatigue failure for a given structural component.  Later, Yao (1974) 

applied this fatigue reliability approach to the design of structural members with a 

specified acceptable probability of fatigue failure.  Around the same time, Yang and 

Trapp (1974) proposed an LEFM-based reliability analysis for fatigue-sensitive aircraft 

structures.  Their approach was based on random vibration theory and took into account 

random loadings for the aircrafts.  Wirsching (1979 and 1980) proposed a fatigue 

reliability analysis procedure based on Miner’s rule for offshore structures, especially for 

failure at welded joints under random wave loadings.  In his studies, a Miner’s rule 

fatigue damage index was first introduced in an S-N curve-based reliability analysis.  

Extensive statistical data were examined to characterize this fatigue damage index, which 

is now commonly used in fatigue reliability studies.  Due to the anticipated widespread 

use of reliability techniques for fatigue problems in engineering, the ASCE Committee on 

Fatigue and Fracture Reliability (1982a-d) published a series of four papers in order to 

review the available fatigue reliability approaches, to discuss the statistical models used 

to describe random variables such as stress range and material properties, and to present 

possible applications of fatigue reliability analysis in the quality assurance, 

maintainability, and design of structural members.  Based on the Miner’s rule, 
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Wirsching (1984) employed a reliability format to establish a design rule for short-period 

offshore structures, and also proposed fatigue design criteria for tendons of tension leg 

platforms (TLPs) (Wirsching and Chen, 1987).  Ortiz and Kiremidjian (1984) proposed 

an LEFM-based fatigue reliability analysis approach to evaluate tubular joints in offshore 

structures.  This model was analyzed by the first-order reliability method (FORM) in 

order to estimate the probability of failure.  Wirsching et al. (1987) also proposed an 

LEFM-based reliability model for fatigue problems but utilized Monte Carlo simulations 

to estimate the probability of failure.  The chief difference between Wirsching’s and 

Ortiz’s LEFM models was in the formulation of the limit state function used in the 

reliability calculations.  The variable explicitly included in the limit state function is 

crack size for the model by Ortiz and Kiremidjian (1984) whereas in Wirsching et al. 

(1987), the variable explicitly modeled is the number of stress cycles as derived from 

Paris’ law.  Jiao and Moan (1990) utilized component and system reliability analysis 

concepts to propose a method of updating of the fatigue reliability for structural details 

when additional information, such as the detection or non-detection of a crack, was 

available from inspections.  Their proposed method improved on existing applications 

of fatigue reliability analysis by taking into consideration the findings from inspections.  

Thus, the fatigue reliability of a detail could be updated whenever new information was 

collected for that detail – this then resulted in a more accurate fatigue reliability estimate 

reflecting the true nature of the detail.  In a similar way, Ximenes and Mansour (1991) 

discussed an LEFM-based approach for the system reliability of TLP tendons undergoing 

progressive fatigue damage at several joints, where reliability updating due to inspections 

was included in their analyses.  Faber et al. (1992b) studied the fatigue reliability of 

tubular members in a North Sea jacket-type offshore structure using an LEFM-based 

approach in which a limit state function related to the stress intensity factor was 
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employed.  Jiao (1992) extended the reliability updating procedure by setting a target 

reliability level so that after each inspection, this methodology was applied for scheduling 

future in-service inspections for TLP tethers.  Hovde and Moan (1994, 1997) presented 

a procedure for estimating the fatigue reliability of a TLP system in which the effects of 

inspections and repairs were explicitly considered. 

Thus, at least in the offshore industry and to some degree in the aerospace 

industry, the various studies carried out over the last thirty years have successfully used 

different approaches such as the S-N curve-based approach or an LEFM-based approach 

to evaluate the reliability of a detail, a component, or a structural system against fatigue 

failure.  Additionally, several studies also sought to include findings from inspections as 

part of a reliability updating framework that took advantage of field inspections.  Based 

on these initial studies, subsequent work on fatigue-related reliability analysis focused on 

two distinct directions.  One direction led to developments related to the influence of 

nondestructive inspections on fatigue reliability analysis.  Some examples of a focus on 

this direction include research studies by Hong (1997), Zheng and Ellingwood (1998), 

and Zhang and Mahadevan (2000, 2001).  A second research direction essentially 

continued the approaches developed in the offshore and aerospace industry but began to 

focus on detailed modeling issues such as an examination of the rate of short crack 

growth relative to long crack growth for welded T-joints by Lanning and Shen (1996, 

1997), consideration of inspections and repair in the fatigue reliability of ship hull 

structures by Garbatov and Soares (1997), and investigation of the use of alternative 

numerical computational models in probabilistic fracture mechanics with a focus on 

efficiency and accuracy by Liu et al. (1996). 

For steel bridges, too, the application of fatigue reliability procedures has been 

proposed since the mid-1980s.  However, compared to the offshore and aerospace 
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industries, studies of fatigue reliability for steel bridges have been far fewer.  Yazdani 

(1984) and Yazdani and Albrecht (1987) describe an LEFM-based probabilistic 

procedure to estimate the risk of fatigue failure of steel highway bridges as a system 

reliability problem.  They use Monte Carlo techniques and first-order bounds on the 

system reliability to estimate the bridge failure probability.  Zhao et al. (1994a) 

employed both a Miner’s rule approach (they refer to this as the AASHTO approach) as 

well as an LEFM-based approach in structural reliability computations of specific details 

on steel bridges.  In addition, based on the initial work of Jiao (1992), Zhao et al. 

(1994b) applied reliability updating procedures to incorporate the findings from 

nondestructive inspections in evaluation of the fatigue reliability of details in steel 

bridges.  Massarelli and Baber (2001) employed LEFM-based fatigue reliability analysis 

for details in steel highway bridges subjected to random, variable-amplitude traffic loads.  

Inspection data were also incorporated in their analyses.  Righiniotis (2004) studied the 

effects of load restrictions, inspections, and repairs on the fatigue reliability of a typical 

welded joint in steel bridges.  This study was based on a modified approach to the 

conventional Paris law and involved the use of a two-stage relation for the crack growth 

rate – one stage was termed the “near-threshold” stage, the other was the Paris crack 

growth region.  Repair/invasive actions are also discussed following detection of a crack 

and are included in the analysis. 

 

2.1.2 Reliability-Based Fatigue Inspection Scheduling 

One of the most important applications of fatigue reliability is in scheduling of 

inspections for structures.  For a specified target reliability (or, equivalently, a minimum 

allowable safety level), the objective of such a reliability-based scheduling problem is to 

come up with an inspection program that is the most economical and also maintains the 
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fatigue reliability of the structural component or system above the target reliability.  

Costs, here, are assumed to include the cost of inspections, expected costs associated with 

any needed repairs, and expected costs associated with failure.  (Note that even though 

failure probability is maintained at a target low level, it is not identically zero and hence, 

an estimate of costs of failure is required.) 

This reliability-based scheduling problem for fatigue-sensitive structures has been 

studied extensively in the offshore industry particularly because of the large investments 

in offshore facilities, and because underwater inspections tend to be extremely expensive.  

In the North Sea because of the harsher marine environment there, in particular, there 

have been a large number of studies performed that relate to reliability-based fatigue 

inspection scheduling for offshore platforms. 

Thoft-Christensen and Sorensen (1987) published one of the earliest papers in the 

area of reliability-based scheduling where they proposed a procedure for establishing an 

optimal schedule for inspection and repair of structural systems that were subjected to 

fatigue loading.  The cost function employed in their approach only considered 

inspection and repair costs; expected system failure costs were not included.  Following 

the work of Thoft-Christensen and Sorensen (1987), the Fifth International Conference 

on Structural Safety and Reliability (ICOSSAR ’89) included the publication of several 

papers related to reliability-based optimal inspection scheduling for offshore structures.  

For example, Madsen et al. (1989) and Fujita et al. (1989) proposed optimal inspection 

scheduling procedures for fatigue-sensitive details in offshore structures and involved the 

use of LEFM-based fatigue reliability analyses, tree analysis (to represent inspection and 

repair scenarios), inclusion of failure costs in the overall cost function, and an 

optimization process that involved minimization of the total cost.  The only difference in 

these two studies was in the formulation of the limit state function used to describe the 
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fatigue reliability.  Wirsching and Torng (1989) illustrated practical examples of the use 

of optimal strategies for design, inspection, and repair of structural systems.  Cramer 

and Friis-Hansen (1992) applied these same reliability-based inspection scheduling 

procedures for homogeneous continuously welded structures containing hazardous 

material where prevention of leakage was critical. 

The development of reliability-based inspection scheduling studies up this point 

in time employed tree analyses where at each branch point, only two events – “repair” or 

“no repair” – were considered when enumerating the scenarios to be considered in the 

optimization.  Sorensen et al. (1991) and Faber et al. (1992a) extended the two-event 

type branches in the trees to allow for multi-event branches in component-level and 

system-level analyses by taking into consideration the possibility of several different 

repair effort choices that could exist in practical problems.  In such approaches, 

however, numerous alternative repair scenarios in the event tree needed to be analyzed, 

and the proposed multi-event type tree analyses thus demanded an extensive amount of 

computations.  To address this, a proposal to neglect all scenario branches that 

contributed very low costs was made so as to improve the computational efficiency of the 

optimization procedure. 

Moan et al. (1993) utilized event tree techniques to include the effects of 

inspection and repair on fatigue reliability and further proposed a reliability-based fatigue 

design criterion for offshore structures.  Several research studies (including those by 

Dharmavasan et al. (1994) and Lotsberg et al. (1999)) demonstrated how in-service 

inspection programs for offshore structures, sometimes involving both reliability analysis 

and knowledge-based computer systems, could be established that could provide rational 

schedules for safety and maintenance of offshore structures. 
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As a result of the successes in application of reliability-based inspection 

scheduling procedures in the offshore industry, other areas in civil engineering began to 

employ these procedures as well, particularly where deterioration mechanisms require 

some maintenance to avoid failure.  For example, Sommer et al. (1993) proposed a 

reliability-based inspection strategy to address corrosion problems in steel girder bridges.  

Also, Frangopol et al. (1997) utilized the methodology to arrive at an optimal inspection 

and repair plan for reinforced concrete T-girders in a highway bridge to deal with 

possible reinforcement corrosion over time. 

In summary, the development of a rational procedure for arriving at an optimal 

inspection scheduling program grew primarily out of the aerospace and offshore 

industries but has matured to the point where it has seen application in several areas of 

civil engineering where fatigue or some other deterioration mechanism may be present.  

One area that has not seen application of such optimal inspection scheduling procedures 

is that of fatigue inspection for steel bridges.  This dissertation is focused on exactly this 

problem.  The research here has benefited from the various previous studied cited in his 

literature review.  Issues unique to fatigue in steel bridges, especially for fracture-critical 

members in these bridges, are developed in this research which will focus on event tree 

analyses and detailed structural reliability calculations reflecting variability in loading, 

material properties, and behavior.  Additionally, one area that has been not addressed in 

most of the previous applications of the optimization procedure – namely accounting for 

imperfect quality of the inspections – will be taken up here and included in an alternative 

optimization framework to the most common one in use in most of the cited studies. 
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2.2 STRUCTURAL RELIABILITY ANALYSIS 

The field of structural reliability analysis has been well developed over the last 

four decades and has been widely applied in many areas.  In this section, general 

concepts of structural reliability and numerical techniques employed in this research are 

presented.  The objective of structural reliability analysis for a structural member or 

system is to estimate its probability of failure (or its complement, the probability that 

there will not be a failure, i.e., the reliability) recognizing the role of resistance and load 

uncertainties in such calculations.  It is convenient to construct a limit state function that 

differentiates between failed and safe states and can be mathematically expressed in 

terms of all of the known random variables.  With well-established numerical 

techniques, it is then possible to estimate the probability of failure or reliability of the 

structural component or system under consideration. 

 

2.2.1 Limit State Function 

Defining a limit state function that can adequately describe the relationship 

between the capacity (or resistance) and the applied load (or demand) on a structural 

member is the first step in a structural reliability analysis.  Hence, a limit state function 

can often be thought to be composed of a resistance-related measure, R, and a load-

related measure, S.  These two elements are generally described in terms of random 

variable(s) that can take into account various uncertainties in the material properties, the 

load, and the model used to describe the behavior of the structural component or system.  

In many engineering problems, a simple form for a limit state function may be given as 

follows: 

 ( ) SRSRg −=,  (2.1) 
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Note that in Equation 2.1, the resistance measure, R, and the load measure, S, will 

themselves need to be expressed in terms of other random variables. 

In structural engineering problems, it is common to refer to different types of limit 

states based on the mode of failure of the structural component or system under 

consideration.  Some common limit states include serviceability limit states, ultimate 

limit states, and fatigue (or damage accumulation) limit states.  The following are 

examples of each of these limit state functions: 

(1) Serviceability limit state for mid-span deflection of a simple beam subjected to a 

uniformly distributed load: 

 ( ) EIwLLIEwLg 3845360,,, 4−=  (2.2) 

where L is the span length, L/360 is the maximum allowable deflection, w is the 

uniformly distributed load, E is the Young’s modulus for the material, and I is the 

moment of inertia of the cross-section of the beam. 

(2) Ultimate limit state for the bending moment capacity of a compact steel beam: 
 ( ) MZFMZFg yy −⋅=,,  (2.3) 

where Fy is the yield stress of the material (steel), Z is the plastic section modulus, 

and M is the applied bending moment at a position of interest along the beam. 

(3) Stability limit state associated with the buckling of an Euler column: 

 ( ) PkLEIkPLIEg −= 22 )(,,,, π  (2.4) 

where E is the Young’s modulus of the material; I is the moment of inertia of the 

column cross-section, kL is the effective length of the column accounting for 

support/boundary conditions, and P is the axial load on the column. 

(4) Fatigue limit state for a component subjected to cyclic loading: 

 ( ) N
S
ANmSANNmSAg m

RE
REcRE −

∆⋅
=−∆=∆ ),,,(,,,,  (2.5) 
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where Nc is a critical number of cycles which if exceeded will cause failure.  Note 

that Nc depends on material properties, A and m as well as on an “equivalent” stress 

range, SRE.  Model uncertainty is described by the variable, ∆, and N is the 

accumulated number of stress cycles that the component experiences. 

After defining the limit state function, g(X), it is possible to tell whether a 

component has failed by checking if g(X) is less than or equal to zero.  Considering the 

likelihood of all combinations of random variables in X where this is true yields the 

probability of failure, PF: 

 ( )[ ]0≤= XgPPF  (2.6) 

where P[ ] signifies the probability of the event in brackets.  The complementary 

probability, PS, is then: 

 ( )[ ]0>= XgPPS  (2.7) 

 

2.2.2 A Simple Load and Resistance Model 

Consider a case where the resistance and load variables, R and S, are statistically 

independent normally distributed random variables with mean values, µR and µS, 

respectively, and standard deviations, σR and σS, respectively, as shown in Figure 2.1.  

The limit state function g(R, S) consists of the two random variables and is essentially a 

random variable as well.  Since g(R, S) is a function of the independent random 

variables, R and S, it has mean, µg, and standard deviation, σg, that may be calculated as 

follows (see Appendix A): 
 SRg µµµ +=  (2.8) 
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Figure 2.1: Statistical Distributions of R, S, and g(R,S). 

The probability of failure can now be calculated as follows: 
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where Φ( ) is the cumulative distribution function (CDF) of a standard normal random 

variable.  Correspondingly, the complementary probability PS can be evaluated as: 
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More generally, for two dependent variables, R and S, with joint probability 

density function, fR,S(r,s), it is necessary to estimate the probability of failure in terms of a 

double integral over the entire failure domain.  Thus, we have: 
 ( )[ ] ( )

( )
∫∫

≤

=≤=
0,

, ,0,
SRg

SRF drdssrfSRgPP  (2.12) 

The complementary probability PS can then be defined as 
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,  (2.13) 

2.2.3 Reliability Index and Probability of Failure 

It is convenient to define a reliability index, β, that is related to the probability of 

failure, PF as follows: 

 ( ) ( )FF PP 11 1 −− Φ−=−Φ=β  (2.14) 

or inversely as, 

 ( )β−Φ=FP  (2.15) 

This reliability index, β, increases as the probability of failure decreases.  A set of PF 

values of and corresponding β values are shown in Table 2.1.  In civil engineering 

applications, typical levels of acceptable probabilities of failure are around from 10-3 to 

10-4.  The corresponding reliability index values then range from 3.72 to 4.27. 

Table 2.1: Some Typical Values of Probability of Failure, PF, and Corresponding 
Reliability Index Values, β. 

Probability of Failure, PF Reliability Index, β 

10-1 1.28 

10-2 2.33 

10-3 3.09 

10-4 3.72 

10-5 4.27 

10-6 4.75 

10-7 5.20 

When there are several random variables that are needed in the definition of the 

limit state function, a joint probability density function, fX(x), for a vector, X = { X1, 
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X2, … Xn} representing all n random variables may be used to compute the probability of 

failure as follows: 
 ( )[ ] ( )

( )∫ ∫ ≤
=≤=

0
0

X X xX
gF dfgPP xL  (2.16) 

The reliability index, β, can still be computed using Equation 2.14. 

Though the probability of failure can be calculated using Equation 2.16, the 

integration implied by Equation 2.16 is rarely carried out.  This is because the joint 

probability density function fX(x) is difficult to obtain.  Also, the multi-dimensional 

integration needed in Equation 2.16 is formidable and generally difficult to compute with 

great accuracy due to the nature of the functions involved (and, especially, because rare 

failures and high reliability are associated with tails of probability distribution/density 

functions).  As a result, several more efficient numerical procedures, such as the First-

Order Reliability Method (FORM), the Second-Order Reliability Analysis (SORM), and 

various simulation techniques have been used for most structural reliability analyses.  

Two of these, FORM and Monte Carlo simulations, which are extensively employed in 

this research, are briefly reviewed next. 

 

2.2.3.1 First-Order Reliability Method (FORM) 

The First-Order Reliability Method (FORM) has been in used for structural 

reliability analyses since the 1970s following early work that included studies of Hasofer 

and Lind (1974) followed by Rackwitz and Fiessler (1978) among others who improved 

on the original development and formulation.  The basic idea in FORM is to find the 

closest distance, β, from the origin in uncorrelated standard normal (U) space to a 

linearized form of the true limit state surface (separating the “safe” state from the “failed” 

state).  The point on the limit state surface closest to the origin is commonly referred to 

as the “design point.”  The probability of failure is estimated using the distance, β, using 
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Equation 2.15.  The algorithm used in FORM to determine the closest distance from the 

origin in U space to the linearized limit state surface is outlined in Appendix B. 
 

 

Figure 2.2: Illustration of the First-Order Reliability Method (FORM). 

2.2.3.2 Monte Carlo Simulation 

Monte Carlo simulation involves repeated drawing random samples of all random 

variables involved in the limit state function and simply checking whether a new 

“failure” or “non-failure” has resulted (or, equivalently, whether the limit state function 

had a value less than zero or not).  This then offers an alternative way to carry out the 

numerical integration of Equation 2.16, which can be expressed as follows: 
 ∫ ∫ ≤= xxX X dfgIPF )(]0)([K  (2.17) 

where I[g(X) ≤ 0] = 1 if g(x) ≤ 0 and I[g(X) ≤ 0] = 0 otherwise; X = {X1, X2,…, Xn} is a 

vector of n random variables; fX(x) is the joint probability density function of X.  Based 

on N simulations, Equation 2.17 can now be used to estimate PF as follows: 

 ( )[ ]∑
=

≤≈
N

k
iF XgI

N
P

1

01  (2.18) 

This computation is demonstrated pictorially in Figure 2.3. 
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Figure 2.3: Flow Chart of Monte Carlo Simulation Method. 

As can be seen in Figure 2.3, the Monte Carlo simulation procedure may be 

summarized by the following steps: 

(1) Represent all the basic random variables (X1, X2, … , Xn) that occur in the limit 

state function by their probabilistic distributions; 

(2) Randomly sample each random variable.  For example, the ith simulation would 

yield (x1, x2, … , xn)I; 

(3) Substitute this vector of values, (x1, x2, … , xn)i, into the limit state function to 

calculate the value of g(Xi); 

(4) If g(Xi) ≤ 0, increase the number of failures (NF) by one; 

(5) Repeat Steps (2) to (4) N times (where N should be sufficiently large for good 

estimates of PF); 

(6) Estimate the probability of failure as NF/N. 
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Monte Carlo techniques are computationally expensive compared to other 

reliability analysis procedures such as FORM.  Several other simulation-based 

procedures have been proposed to improve the efficiency of ordinary Monte Carlo 

simulations; these include the antithetic variates method, the control variates method, 

importance sampling, and Latin Hypercube sampling.  For details related to these 

various methods, refer to Ang and Tang (1984); Iman and Conover (1980); Melchers 

(1989). 

 

2.3 DETERMINISTIC FATIGUE ANALYSIS FOR STEEL BRIDGES 

In various engineering applications where structural components or structures are 

subjected to repeated fluctuating loads, deterministic analyses are often used in fatigue 

life estimation and in design for fatigue.  There are three primary methods for 

deterministic fatigue analysis.  These include stress-based approach, strain-based, and 

linear elastic fracture mechanics (LEFM) approaches.  Stress-based and strain-based 

approaches are not related to the actual state of fracture of the detail or component nor on 

whether a crack of any size is actually present.  The LEFM approach, however, is 

related to the stress field and rate of growth of a crack of a specific size with time.  

These three approaches and areas of application of each are briefly described next. 

 

2.3.1 Stress-Based Approach (S-N Curve Approach) 

A stress-based approach for fatigue analysis is applicable to high-cycle fatigue 

(HCF) problems where stresses and strains are within the elastic range of the material and 

the structural components are assumed to be initially uncracked.  High-cycle fatigue 

refers to cases where the number of cycles until failure is greater than a specified value, 
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ranging from 10 to 105, depending on the material (Bannantine et al., 1990) but a number 

around 10,000 may be appropriate for application in steel bridges.  For most structural 

components in steel bridges, the stresses and strains generated by repeated traffic loading 

are below the elastic limit of the structural steel.  Since these structural components are 

expected to have long service lives; the only type of fatigue of concern is high-cycle 

fatigue.  Hence, the stress-based approach is widely employed for deterministic fatigue 

analysis of steel bridges.  This stress-based approach involves establishing an empirical 

relationship between stress range amplitudes (SR) and number of cycles to failure (Nf) as 

follows: 
 m

Rf SΑN −⋅=  (2.19) 

where A and m are constants related to the material.  Equation 2.19 describes a linear 

relationship between logSR and logNf.  A large number of fatigue tests are needed to 

construct an S-N curve (describing the straight line relating logSR to logNf).  In the 

AASHTO specifications, each design S-N curve is defined conservatively (by specifying 

the value of A for the specific detail and assuming m is equal to 3 for steel) so that, based 

on the variability in the fatigue data, it represents the 95% confidence limit for 95% 

survival of all details in a given category (Barsom and Rolfe, 1999).  Even though there 

is an implied probability of failure associated with the use of Equation 2.19, we refer to it 

as a deterministic approach because no reliability calculations based on the actual 

condition of the detail are carried out that either consider the variability in the loading or 

in the material properties/behavior. 
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Figure 2.4: Schematic S-N Diagram for a Typical Detail  
in the AASHTO Specifications (1990). 

Barsom and Rolfe (1999) discussed how the fatigue strength of components or 

details is affected by several factors that may be classified into three broad categories: 

stress, geometry/properties, and environment.  The stress factors include the applied 

stress ranges, the mean stress, the stress ratio, whether the loading can be characterized as 

being of a constant- or variable-amplitude nature, the loading frequency, the maximum 

stress, and the residual stresses.  The geometry and properties of the component/detail 

include stress concentration, size, stress gradient, surface finish, and metallurgical as well 

as mechanical properties of the base metal and any associated welds.  Environmental 

factors include temperature as well as exposure to corrosion, oxidation, and other effects 

of the environment.  In addition, several surface treatments such as nitriding, shot 

peening and cold rolling can influence fatigue behavior.  Based on fatigue test results 

from numerous welded details in steel beams, Fisher et al. (1970) concluded that stress 
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range and the type of weld detail are the primary factors that influence the fatigue 

strength of details in steel bridges. 

Miner (1945) proposed a linear damage accumulation rule to account for effects 

of fatigue on structural components or details subjected to variable-amplitude loading.  

Miner’s damage accumulation index, D, is defined as follows: 

 ∑
=

=
k

i f,i

i

N
nD

1

 (2.20) 

where ni is the actual number of cycles associated with a specific stress range level, SR,i, 

and Nf,i is the number of cycles until failure under a constant-amplitude stress range level, 

SR,i.  The detail under consideration is deemed to be safe if D < 1.  Failure corresponds 

to situations where D ≥ 1.  This damage accumulation rule is commonly referred to as 

Miner’s rule. 

Combining Equation 2.19 with Miner’s rule and setting the damage accumulation 

index, D, to unity, an equivalent stress range, SRE, that accounts for the variable-

amplitude nature of the loading may be derived as follows: 
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,∑ ⋅= γ  (2.22) 

where γi is the ratio of ni to the total number of accumulated stress cycles, N, in the detail 

(i.e., γi = ni·N), and SR,i is as defined before.  With the equivalent constant-amplitude 

stress range, SRE, defined in Equation 2.22, the number of cycles until failure for any 

detail that is experiencing variable-amplitude loading may be estimated using a 

conventional S-N diagram. 

Next, we describe two stress-based fatigue evaluation methods in common use for 

steel bridges in the United States.  These are the AASHTO LRFD fatigue design 

specifications and the fatigue evaluation model proposed by Moses et al (1987) that was 
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adopted as part of the AASHTO Guide Specifications (1990).  While there are 

differences in the approaches used to evaluate the fatigue life of a detail using these two 

methods, the design S-N curves for the two methods are identical and are based on the 

same data.  Also, these design S-N curves were conservatively developed so as to assure 

with 95% confidence that 95% of all details would survive up to the design life implied 

by the Specifications. 

 

2.3.1.1 AASHTO LRFD Fatigue Design Specifications 

In the AASHTO LRFD Specifications (1998), S-N curves are given for each of 

eight different categories of details in steel bridges for fatigue design.  The AASHTO 

live load factor of 0.75 is employed with the HS20 design truck yielding an equivalent 

HS15 fatigue truck that is employed for steel bridges to evaluate live load stress ranges 

for any detail.  Thus, for fatigue design, each detail needs to satisfy the following 

requirement: 

 ( ) ( )nFfγ ∆≤∆⋅  (2.23) 

where γ is the load factor equal to 0.75 for fatigue limit states; (∆f) is the live load stress 

range of the HS20 design truck; (∆F)n is the nominal fatigue resistance which is defined 

as follows: 

 ( ) ( )thn F
N
ΑF ∆≥⎟

⎠
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2
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1

 (2.24) 

for which 

 SLs ADTTCN ⋅⋅⋅= 75365  (2.25) 

where Α is a constant specified for each of the eight fatigue categories for any detail and 

(∆F)th is the constant-amplitude fatigue threshold for each category (given in Table 2.2).  

Also, ADTTSL (the average number of trucks per day in a single lane) is related to ADTT 
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(the average number of trucks per day) as shown in Table 2.3, and Cs is the number of 

stress range cycles per truck passage (given in Table 2.4), and  These fatigue design 

provisions only need to be applied to (i) details that are subjected to a net applied tensile 

stress; or (ii) details where the compressive stress is less than twice the maximum tensile 

live load stress resulting from the specified fatigue live load combination.  In Equation 

2.24, the threshold stress, ∆Fth, is multiplied by a factor of one-half to account for the 

possibility of the heaviest truck in 75 years being twice the weight of the fatigue truck 

used in calculating the stress range. 

 

Table 2.2: Fatigue Detail Constant, Α, and Fatigue Threshold, (∆F)th. 

Fatigue Category Fatigue Detail Constant, Α (ksi3) Fatigue Threshold, (∆F)th (ksi)
A 250.0×108 24.0 
B 120.0×108 16.0 
B’ 61.0×108 12.0 
C 44.0×108 10.0 
C’ 44.0×108 12.0 
D 22.0×108 7.0 
E 11.0×108 4.5 
E’ 3.9×108 2.6 

 

Table 2.3: Fraction of Truck Traffic in a Single Lane, p. 

Number of Lanes 
Available to Trucks p 

1 1.00 
2 0.85 

3 or more 0.80 
ADTTSL = p⋅ADTT 
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Table 2.4: Number of Stress Range Cycles per Truck Passage, Cs. 

Span Length 
Longitudinal Members 

> 40.0 ft ≤ 40.0 ft 
Simple-Span Girders 1.0 2.0 

within 10% of the 
span length near 
interior support 

1.5 2.0 Continuous 
Girders 

elsewhere 1.0 2.0 
Cantilever Girders 5.0 

Trusses 1.0 
Spacing 

> 20.0 ft ≤ 20.0 ft Transverse Members 

1.0 2.0 

 

According to the S-N curves provided in the AASHTO LRFD Specifications 

(1998) for the eight different categories, the fatigue life of a detail in one of these eight 

fatigue categories may be estimated using the following equation: 
 ( ) 3−∆⋅= fΑN f  (2.26) 

The conservatism in the design approach adopted by the AASHTO LRFD 

Specifications may arise from overestimation of the stress ranges or the conservative 

manner in which the design curves for each category were defined. 

 

2.3.1.2 The Fatigue Evaluation Model proposed by Moses et al. 

Moses et al. (1987) proposed a fatigue evaluation procedure for details in steel 

bridges that was adopted in the AASHTO Guide Specifications for Fatigue Evaluation of 

Existing Steel Bridges (1990).  This procedure uses the same eight S-N curves that are 
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also used in the AASHTO LRFD Specifications.  Additionally, however, reliability and 

safety factors are considered in this method in order to determine the remaining safe 

fatigue life or the remaining mean fatigue life.  The remaining fatigue life of a detail in 

any of the eight AASHTO fatigue categories may be estimated as 

 
( ) a

Rssa
f Y

SRCT
KfY −
⋅⋅
×⋅

= 3

610  (2.27) 

where Yf is the remaining fatigue life in years; Ya is the present age of the bridge in years; 

K is a detail constant that depends on the fatigue category (see Table 2.5); Ta is the 

estimated lifetime average daily truck volume in the outer lane; Cs is the stress cycles per 

truck passage; f is a safety factor (taken to be 1.0 when calculating safe life and 2.0 when 

calculating mean life); Rs is a reliability factor associated with calculation of the stress 

range (taken to be 1.35 for redundant members and 1.75 for non-redundant members 

when calculating safe life; and taken to be 1.0 when calculating mean life); SR is the 

stress range that can be obtained from a field stress-range histogram analysis, a HS15 

fatigue truck analysis, or a field gross vehicle weight histogram analysis.  The remaining 

fatigue life of a detail may be considered as infinite if (i) the factored stress range (i.e., 

Rs·SR) is less than the limiting stress range for infinite life, SFL (see Table 2.5); or (ii) the 

compressive dead load stress in the detail is greater than two times the factored tensile 

portion of the live load stress range.  The limiting stress range, SFL, in Table 2.5 is equal 

to the fatigue threshold, ∆Fth, (in Table 2.2) multiplied by a factor of 0.364.  The factor 

of 0.364 was derived from a simplified reliability analysis by Moses et al. (1987) to 

provide a high probability that all of the stress ranges in the stress spectrum will be below 

the fatigue threshold, ∆Fth. 
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Table 2.5: Detail Constant, K, and Limiting Stress Range, SFL, 
in the Model of Moses et al. (1987). 

Fatigue Category Detail Constant,  
K (ksi3) 

Limiting Stress Range for Infinite Life, 
SFL (ksi) 

A 68 8.8 

B 33 5.9 

B’ 17 4.4 

C 12 3.7 

D 6.0 2.6 

E 2.9 1.6 

E’ 1.1 0.9 

F 2.9 2.9 

 

In this model of Moses et al (1987), the value of the detail constant, K, multiplied 

by 365×106 is the same as the other detail constant, Α, in the AASHTO LRFD Bridge 

Design Specifications (1998) because both models are based on the same S-N curves.  

However, by incorporating the reliability factor, Rs, and the safety factor, f, the model 

proposed by Moses et al. (1987) is more conservative than the AASHTO LRFD model in 

evaluating fatigue life.  For example, since the stress range in a non-redundant detail 

would be multiplied by the reliability factor, Rs, of 1.75, the fatigue life would be lowered 

by a factor of 1.753 (or approximately, 5.36) with Moses’ model.  This indicates the 

greater conservatism implied by Moses’ model that has been employed in the AASHTO 

Guide Specifications (1990) as compared to the AASHTO LRFD Bridge Design 

Specifications (1998). 
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2.3.2 Strain-Based Approach 

A strain-based approach for fatigue analysis is usually employed for low-cycle 

fatigue (LCF) problems where structural details experience very high stress levels and 

plastic strains contribute a considerable portion towards the total strain.  Structural 

components and details are designed to sustain loads in the elastic range of materials.  

However, stress concentration and stress redistribution can often bring about plastic strain 

in structural components.  A strain-based approach for fatigue analysis can be 

formulated using the Basquin-Coffin-Manson relation as follows: 

 ( ) ( )c
frevf

b
frev

f NN
E ,, 22

2
ε

σε ′+
′

=
∆  (2.28) 

where ∆ε/2 is the total strain amplitude; Nrev,f is the number of reversals to failure (2 

reversals = 1 cycle); E is the Young’s modules for the material; σ′f is a fatigue strength 

coefficient; ε′f is a fatigue ductility coefficient; b is a fatigue strength exponent; and c is a 

fatigue ductility exponent.  The Basquin-Coffin-Manson formulation for evaluating 

fatigue is based on relating fatigue life to the number of stress amplitude cycles (Basquin, 

1910) and to the number of plastic strain amplitude reversals (Coffin, 1954; Manson, 

1954).  The various material properties, σ′f, ε′f, b, and c, can be obtained from laboratory 

tests and the Basquin-Coffin-Manson relation can be understood by studying a log-log 

plot of strain amplitude versus load reversals as is shown in Figure 2.5.  It can be seen 

that this strain-based curve approaches the elastic line when the total strain amplitude 

levels are low and it approaches the plastic line while the total strain amplitude levels are 

high. 

Crack initiation often occurs at the plastic zone in details due to the formation of 

slip bands.  The strain-based approach is frequently employed to estimate the initiation 

life for details. 
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Figure 2.5: Schematic Strain-Life Curve. 

 

2.3.3 Linear Elastic Fracture Mechanics (LEFM) Approach 

In the stress- and strain-based approaches, uncracked structural components or 

details are assumed at the beginning of the fatigue analyses.  The growth of cracks in 

components or details is not accounted for in these approaches.  A fracture mechanics 

approach, on the other hand, can be employed to analyze fatigue in cracked components 

where the cracks might, for example, originate from material or welding flaws, or might 

have initiated during previous loadings.  The linear elastic fracture mechanics (LEFM) 

approach is the most common fracture mechanics approach employed in engineering 

applications.  This approach is based on the assumptions of small displacements, that 

the material is isotropic and linear elastic, and that a small plastic zone exists at the crack 

tip.  According to LEFM, the stress intensity factor, K, around a crack tip may be 

expressed as follows: 

b 

c 

Failure Reversals 2Nrev,f  (log scale)

T
ot

al
 S

tr
ai

n 
A

m
pl

itu
de

 ∆
ε/

2 
(lo

g 
sc

al
e)

 

ε′f 

σ′f /E 

elasticplastic



 35

 ( ) aaFK  πσ⋅=  (2.29) 

where a is the size of the crack; F(a) is a function accounting for the shape of the 

specimen and the crack geometry; σ is the far-field stress resulting from the applied load 

on the component. 

For metallic materials, the crack growth behavior due to fatigue loading may be 

represented as a sigmoidal curve on a logda/dN–log∆K plot and can be divided into three 

regions as shown in Figure 2.6, where ∆K is the stress intensity factor range in a stress 

cycle.  In Region I, a threshold stress intensity factor, ∆Kth, is shown below which crack 

growth cannot be detected.  The closer the stress intensity factor range ∆K is to ∆Kth, the 

slower is the rate of crack growth.  Below ∆Kth, cracks do not grow under cyclic 

loading.  In Region III, the crack growth rate is so high that cracks grow rapidly until 

the component fractures.  Because cracks grow so fast in Region III, the crack growth 

behavior in this region does not significantly affect the total fatigue life.  Region II is the 

most important region involving crack propagation that affects fatigue analysis.  Paris 

and Erdogan (1963) proposed an empirical equation relating the rate of crack growth to 

the stress intensity factor range as follows: 

 ( )mKC
dN
da

∆⋅=  (2.30) 

where C and m are material properties obtained from data in Region II.  The relationship 

described by Equation 2.30 is commonly referred to as Paris’ law. 
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Figure 2.6: Crack Growth Rate versus Stress Intensity Factor Range. 

Upon substitution of Equation 2.29 into Equation 2.30 and rearranging terms so as 

to compute the number of cycles to failure, Nf, it takes for a crack to grow from an initial 

crack size, ai, to a failure crack size, af, it follows that: 
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The number of cycles to failure, Nf, is very sensitive to the value of the initial crack size, 

ai, and small changes to ai can result in large variations in estimates of Nf.  Generally, 

the initial crack size is not easily measured or estimated especially for details assumed to 

be “uncracked.”  Determination of the size of a crack, when present, depends on the 

non-destructive evaluation (NDE) technique.  In design calculations, the initial crack 

size is usually set at a conservative value so that the number of cycles to failure is not 

overestimated.  In addition, for complicated details, it is not always easy to accurately 
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estimate stress intensity factors due to the complex geometric shapes that might be 

involved.  In summary, limitations of the LEFM approach arise mostly due to 

difficulties in estimation of the initial crack size and due to geometric complexities 

associated with the detail being analyzed. 

 

2.4 CONCLUDING REMARKS 

In this chapter, we have reviewed the relevant literature pertaining to fatigue 

reliability analysis and reliability-based inspection scheduling methods in various 

engineering applications.  This provides useful background information and guidance 

for applying similar reliability analysis and inspection scheduling techniques with 

appropriate modification for use on steel bridges.  Theories and procedures employed in 

probabilistic structural reliability analysis as well as in three different deterministic 

fatigue analysis approaches were reviewed in this chapter.  Two deterministic fatigue 

approaches – the stress-based approach and the LEFM approach – will be used together 

with the fatigue load modeling procedures described in Chapter 3 in order to formulate 

fatigue reliability analysis approaches in Chapter 4 for dealing with two types of fracture-

critical members (those categorized according to AASHTO and those not).  Subsequent 

chapters demonstrate how these reliability analyses may then be used in inspection 

scheduling. 
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Chapter 3: MODELS FOR FATIGUE LOADING IN STEEL 
BRIDGES 

 

3.1 INTRODUCTION 

Fatigue calculations for steel bridges are generally developed based on loads 

arising from passing vehicles, especially single trucks.  Due to the randomness of the 

actual traffic flow, vehicle-induced loads generate variable-amplitude stress ranges in 

bridge details.  Most of the useful material properties for fatigue analysis, such as the 

fatigue details constant, Α, in the S-N curve approach or the crack growth model 

parameters, C and m, in the Linear Elastic Fracture Mechanics (LEFM) approach are 

derived from fatigue tests under constant-amplitude stress cycles.  It is important to be 

able to correctly model the irregular fatigue load cycles in steel bridges so that the 

material properties obtained from constant-amplitude fatigue tests can be employed for 

variable-amplitude fatigue analysis.  In addition, the magnitude of the cyclic stress 

ranges is a principal parameter that controls the fatigue behavior of details in steel 

bridges.  Estimation of these stress ranges also requires accurate modeling especially for 

steel bridges where fatigue evaluations leading to estimates of remaining life (in 

deterministic approaches) or of reliability (in probabilistic approaches) are influenced by 

the stress range raised to the third power.  Thus, small errors in evaluating stress ranges 

can result in significant errors in results from these fatigue evaluations.  Several 

methods have been proposed to model variable-amplitude fatigue loadings for fatigue 

analyses.  The most practical of these methods is based on statistical modeling that can 

help to derive an equivalent stress range by using the statistical distribution of the full 

loading spectrum.  Such an equivalent stress range can then be used to characterize the 
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variable-amplitude fatigue loadings as is commonly done for bridges and offshore 

structures.  In bridge engineering, three statistical models – stress spectrum analysis, 

assumed distribution analysis, and fatigue truck analysis – are most often used in fatigue 

analyses.  These three analysis methods are described in the following sections. 

 

3.2 STRESS SPECTRUM ANALYSIS 

Before performing a stress spectrum analysis for a detail in a steel bridge, the first 

step is to obtain a representative stress range spectrum for the detail.  The stress range 

spectrum, also known as a stress range histogram, is a statistical summary that shows the 

frequency of occurrence of all stress ranges experienced by the detail during its life.  

These various stress ranges result from the various possible fatigue loadings that are 

induced by passing trucks.  Generally, either stress history data collected for the detail 

or summaries based on cycle-counting approaches are needed in order to establish the 

representative stress range spectrum for the detail. 

In order to accurately reflect the fatigue loading due to the of actual truck traffic, 

the most reliable method is to collect sufficient stress data (stress histories) directly from 

the field.  Field measurements, however, can be expensive.  Schilling et al. (1978) 

suggested two alternatives.  One option is to collect field data on truck traffic on the 

bridge and relate these data to the stress spectrum by suitable models; the other is to 

estimate the stress spectrum directly from field data on similar bridges.  Since stress 

range spectra for bridges are strongly site-specific (Laman and Nowak, 1996), field 

measurements provide the best stress range data for bridge details. 

After collecting sufficient stress data from the field, a proper cycle-counting 

method is needed to process the irregular stress histories and store the data in an 

appropriate and manageable number of stress range bins.  Dowling (1993) suggested 
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that the rainflow cycle-counting method, developed by Matsuishi and Endo (1968), or 

other similar methods that take into consideration the closed hysteresis loops for 

complicated loading processes are the best methods to use for counting cycles.  To 

avoid yielding half cycles in the cycle-counting process, the stress history of a detail can 

be modified by moving the segment of the stress history that occurs before the absolute 

maximum stress to the end of the stress history so that the counting can begin and end at 

the greatest stress value.  A review of the rainflow cycle-counting procedure is 

presented in Appendix C. 

The objective of a stress spectrum analysis is to derive an equivalent stress range 

from the representative stress range spectrum for a specified detail.  The equivalent 

stress range is defined as the constant-amplitude stress range that can yield the same 

fatigue life as the variable-amplitude stress range spectrum for a detail.  An expression 

for the equivalent stress range can be derived separately for the two deterministic fatigue 

approaches – the stress-based approach and the LEFM approach. 

In the stress-based approach, the equivalent stress range, SRE, representing a total 

of N variable-amplitude stress cycles, is derived using the S-N relation and Miner’s rule 

as follows: 
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where SR,i is the value at the mid-point of the ith stress range interval; αi is the occurrence 

frequency of the stress ranges in the ith stress range interval; and m is the material 

constant defined in Equation 2.19 for the S-N curve.  Thus, the equivalent stress range 

represents the combined effect of all of the variable-amplitude fatigue loading cycles on 

the detail and can be treated as a constant-amplitude stress range to be applied in the 

stress-based fatigue analysis. 
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For the fracture mechanics approach, the equivalent stress range is derived using 

Paris’ law given by Equation 2.30, according to which, the crack size increment, ∆ai, in a 

single cycle (say the ith cycle) is: 

 ( )m
ii KCa ∆⋅=∆  (3.2) 

After N stress cycles, the crack is assumed to grow by an amount aN that can be expressed 

as follows:  
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An average crack growth rate can be defined in terms of the total number of stress cycles, 

N, and the corresponding total change in crack size, aN as follows: 
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where ∆KE is defined below and Equation 2.29 is used to relate stress intensity factor 

ranges to stress ranges 
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where F(a) is the geometry function for the crack as defined in Equation 2.29 and ai is 

the occurrence frequency of the stress ranges in the ith stress range interval whose mid-

point value is SR,i. 

Finally, the equivalent stress range in the LEFM-based fatigue analysis can be 

expressed as 
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It may be noted that the expression for the equivalent stress range in the stress-

based approach and the fracture mechanics approach are identical (see Equations 3.1 and 

3.6).  This expression of is sometimes referred to as Miner’s equivalent stress range.  

By setting m equal to 2, the root-mean-square (RMS) equivalent stress range proposed by 
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Barsom (1973) is obtained.  Schilling et al. (1978) compared the Miner’s and RMS 

equivalent stress ranges and found that the Miner’s range provided a more conservative 

estimate than the RMS range in fitting variable-amplitude data to constant-amplitude 

regression lines representing S-N curves. 

 

3.3 ASSUMED DISTRIBUTION ANALYSIS 

Upon examination of sufficient stress range data collected from the field, the 

random and variable-amplitude fatigue loadings in steel bridges will usually reveal some 

regularity and the stress spectra might follow some recognizable probability distributions.  

After years of analyses by several researchers, a few probability distributions have been 

proposed for modeling the stress spectra on details in bridges.  The ASCE Committee 

on Fatigue and Fracture Reliability (1982a-d) discussed possible use of the Rayleigh, 

Weibull, Beta, Polynomial, and lognormal distributions for fatigue analysis.  A closed-

form expression for the equivalent stress range can be easily derived using any of these 

assumed probability distributions and can then be used in the modeling of random fatigue 

loadings on steel bridges.  Derivations of the equivalent stress range for the various 

assumed distributions are presented in the following sections. 

 

3.3.1 Rayleigh Distribution Analysis 

On the basis of the analysis of 51 sets of stress range spectrum data on bridges 

from six sources including Interstate and U.S. routes in semi-rural and metropolitan 

locations, Schilling et al. (1978) showed that the Rayleigh distribution can provide a 

reasonable model for the stress range spectrum of some details in steel bridges.  The 
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Rayleigh probability density function (PDF), ( )Rsf
RS , and cumulative distribution 

function (CDF), ( )RsF
RS , for stress ranges, SR, can be expressed as: 
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where [ ]RR SES ⋅=
π
2

0 .  The mean value, E[SR], and variance, Var[SR]. of the stress 

range are given as follows: 
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A closed-form expression for the mth moment of SR with the Rayleigh distribution can be 

given as: 
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where Γ() is the gamma function and γi represents the fraction of cycles that had stress 

range, sRi. 

The equivalent stress range, SRE, derived from the variable-amplitude stress range 

spectrum with the assumed Rayleigh distribution can be obtained as: 
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where SR0 can be computed using Equation 3.9 and an estimate of the mean stress range 

alone. 
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3.3.2 Weibull Distribution Analysis 

Nolte and Hansford (1976) proposed a Weibull distribution to model the long-

term stress range spectrum.  The two-parameter Weibull probability density function 

(PDF) and cumulative distribution function (CDF) can be written as: 
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where η is a scale parameter and ν is a shape parameter.  These two parameters can be 

obtained using the method of moments along with estimates of the mean and variance 

from the stress range data.  This is possible because the mean value, E[SR], and variance, 

Var[SR], of the stress range with a Weibull distribution may be expressed as follows: 
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A closed-form expression for the mth moment of SR with the Weibull distribution can be 

given as: 
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The equivalent stress range, SRE, derived from the variable-amplitude stress range 

spectrum with the assumed Weibull distribution can be obtained as: 
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where η and ν are obtained using Equations 3.15 and 3.16.  Note that by setting ν equal 

to 2, it can be seen that the Rayleigh distribution is actually a special case of the Weibull 
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distribution.  The Weibull distribution, though, has greater flexibility in modeling data 

than the Rayleigh distribution in part because it involves two parameters. 

 

3.3.3 Beta Distribution Analysis 

Ang and Munse (1975) suggested that the Beta distribution could be applied to 

model fatigue loadings on highway bridges.  The probability density function (PDF) and 

cumulative distribution function (CDF) of stress ranges with the Beta distribution can be 

written as: 

( )
( )

∫ −−
−+

−−

−=
−

⋅=
1

0

11
1

0

1
0

1

)1(),(    where
,

1)( dtttrqB
s

sss
rqB

sf rq
rq

rq
R

SR
 (3.19) 

 
( )
( )rqB

dttt
sF

ss rq

SR ,

1
)(

0/

0

11∫ −− −
=  (3.20) 

where 0 ≤ sR ≤ s0; while q and r are parameters of the distribution; and s0 is an upper 

bound on the stress range.  The mean value, E[SR], and variance, Var[SR], of the stress 

range with a Beta distribution may be expressed as: 
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A closed-form expression for the mth moment of SR with the Beta distribution can be 

given as: 
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The equivalent stress range, SRE, derived from the variable-amplitude stress range 

spectrum with the assumed Beta distribution can be obtained as: 
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where s0 can be taken to be the maximum applied or anticipated stress range and the 

parameters, q and r, can be estimated using Equations 3.21 and 3.22. 

 

3.3.4 Polynomial Distribution 

Yamada and Albrecht (1976) collected 106 published stress range spectra from 29 

highway bridges in the United States and proposed the Polynomial distribution model for 

the stress ranges on highway bridges.  All of the 106 stress range spectra were reduced 

to a non-dimensional form before the analysis.  The probability density function (PDF) 

and cumulative distribution function (CDF) of the non-dimensional stress range variable, 

X, can be written as: 
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where X = SR / Smax, and Smax is the maximum stress range measured in the stress range 

spectrum.  The mean value and variance of X and SR with the Polynomial distribution 

can be obtained as follows: 

 [ ] 4125.0=XE  (3.27) 
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A closed-form expression for the mth moment of SR with the Polynomial distribution can 

be given as: 



 47

 
[ ] ( ) ( )

( )( )( )( )
( ) ( )

( )( )( )( ) ⎭
⎬
⎫

++++
×⋅+++

−

⎩
⎨
⎧

++++
⋅+++

⋅=

−

−

43214
1025.67942268903205022053                      

4321
107368182637

423

223

max

mmmm
mmm

mmmm
mmmSSE

m

mm
R

 (3.31) 

The equivalent stress range, SRE, derived from the variable-amplitude stress range 

spectrum with the assumed Polynomial distribution can be obtained as: 
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3.3.4 Lognormal Distribution 

The ASCE Committee on Fatigue and Fracture Reliability (1982a-d) discussed 

the lognormal distribution model for variable-amplitude stress ranges.  The probability 

density function (PDF) and cumulative distribution function (CDF) of stress ranges with 

the lognormal distribution can be written as: 
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where 
RSλ and 

RSζ  are distribution parameters that can be estimated from the mean 

(
RSµ ) and the coefficient of variation (

RSδ ) of the stress range data as follows: 

 ( ) 25.0ln
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 ( )21ln
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A closed-form expression for the mth moment of SR with the lognormal distribution can 

be given as: 
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The equivalent stress range, SRE, derived from the variable-amplitude stress range 

spectrum with the assumed lognormal distribution can be obtained as: 
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3.4 FATIGUE TRUCK ANALYSIS 

Since single truck passings are a major source of variable-amplitude stress ranges 

on steel bridges, one practical approach for modeling truck-induced fatigue loadings is to 

create an equivalent fatigue truck that when passed over the bridge will generate the 

equivalent stress ranges in details identified for fatigue analysis.  The fatigue damage 

caused by a certain number of passages of trucks of different weights on the bridge is 

thus identical to the fatigue damage caused by an equal number of passages of the 

equivalent fatigue truck on the same bridge.  The equivalent fatigue truck, which is 

analogous to the equivalent stress range derived from the variable-amplitude stress range 

spectrum, can be estimated from the gross vehicle weight (GVW) spectrum as follows:  
 ( ) mm

iiE WW
1  

∑ ⋅= α  (3.39) 

where WE is the equivalent fatigue truck weight; Wi is the value at the mid-point of the ith 

truck weight interval in the GVW spectrum; αi is the occurrence frequency of trucks in 

the ith truck weight interval; and m is the material constant defined in Equation 2.19 for 

the S-N curve.  The GVW spectra for bridges can be obtained from field measurements, 

such as weigh-in-motion data or weigh station data.  Due to the different sources of 

GVW data, several equivalent fatigue truck models have been proposed in the past to 

model truck-induced cyclic loadings on steel bridges.  The analysis procedures for 

generating an equivalent stress range from a fatigue truck in plate girder bridges and box 
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girder bridges are demonstrated in Figures 3.1 and 3.2, respectively.  Because most of 

the equivalent fatigue truck models are developed for design purposes, the equivalent 

stress ranges derived from the equivalent fatigue truck analysis are usually conservative 

compared to the equivalent stress ranges derived from a stress spectrum analysis.  The 

various available equivalent fatigue truck models are described next. 
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Figure 3.1: Flow Chart of Equivalent Fatigue Truck Analysis for Steel Bridges. 
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3.4.1 Schilling’s Fatigue Truck Model 

Based on the Federal Highway Administration 1970 nationwide loadmeter survey, 

Schilling et al. (1978) suggested a fatigue truck model for highway bridge design.  The 

gross vehicle weight (GVW) spectrum analysis of the loadmeter data showed that the 

equivalent gross weight of the fatigue truck calculated from Equation 3.39, by setting m 

equal to 3, was 50 kips, which is about 70% of the weight of AASHTO HS20 design 

truck.  Schilling’s fatigue truck model distributes the 50 kips truck weight according to 

the same axle configuration as the AASHTO HS20 live load design truck (see Figure 

3.2). 

 

 

Figure 3.2: Schilling’s Fatigue Truck Model. 

 

3.4.2 AASHTO Fatigue Truck Model 

The fatigue truck model in the AASHTO specifications is based on the gross 

vehicle weight (GVW) spectrum from the weight-in-motion (WIM) research conducted 

by the Federal Highway Administration (FHWA) in 1981 (Snyder et al., 1985).  This 

research study considered 30 sites in the United States and recorded data from more than 

27,000 trucks.  The FHWA research proposed a fatigue truck model with a gross vehicle 
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weight of 54 kips and, for convenience, the same axle spacing and axle load distribution 

as the AASHTO live load design truck HS20 (weight = 72 kips) were employed.  

Because this equivalent fatigue truck is three-quarters of the vehicle weight of the HS20 

design truck, the AASHTO fatigue truck is also referred to as the HS15 truck in bridge 

engineering.  The configuration of the HS15 truck is shown in Figure 3.3.  The weight 

difference between the AASHTO fatigue truck and Schilling’s fatigue truck might be 

explained in two ways.  One explanation is that the WIM measuring system (used in 

development of the AASHTO fatigue truck model) can detect more overweight trucks 

which was not done in the FHWA loadmeter data from fixed weigh stations (and used in 

development of Shillings’ model).  An alternative explanation might be that truck traffic 

load sizes increased from 1970 to 1981. 

 

 

Figure 3.3: The AASHTO Fatigue Truck Model. 

 

3.4.3 Moses’ Fatigue Truck Model 

Since the GVW spectra for bridges are strongly site-specific, Moses et al. (1987) 

proposed an adaptive fatigue truck model for steel bridges that was adapted in the 

AASHTO Guide Specifications for Fatigue Evaluation of Existing Steel Bridges (1990). 
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Four methods are suggested to obtain the equivalent gross vehicle weight, WE:  

(1) Adjust the gross weight of the fatigue truck based on judgment supported by the 

knowledge of truck traffic at the site; 

(2) Construct a GVW spectrum from weigh station data and apply Equation 3.39 to 

calculate the equivalent gross vehicle weight; 

(3) Construct a GVW spectrum from weigh-in-motion data and apply Equation 3.39 to 

calculate the equivalent gross vehicle weight; 

(4) Collect traffic survey data that include the percentages of various types of trucks in 

the traffic and use Equation 3.39 to calculate the equivalent gross vehicle weight. 

Note that the truck data in Methods (2), (3), and (4) above exclude panel, pickup, 

and other 2-axle/4-wheel trucks.  The estimated equivalent gross vehicle weight is 

distributed in accordance with the same axle weight proportions as the HS20 design truck 

(Figure 3.4). 

 

 

Figure 3.4: Moses’ Fatigue Truck Model. 
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3.4.4 Laman’s Dual Fatigue Truck Model 

Laman and Nowak (1996) studied weigh-in-motion (WIM) data from five steel 

bridges in Michigan, which included 22,000 truck files each containing GVW, axle 

weights, and axle spacing.  Because the state of Michigan permits heavier trucks on 

bridges than in other states, a single fatigue truck model was not sufficient to model the 

fatigue damage in the five bridges studied.  Hence, a dual fatigue truck model was 

proposed to provide a more accurate fatigue damage evaluation method for steel bridges 

under normal truck traffic.  The fatigue damage caused by the passages of all trucks 

with 2 to 9 axles was felt to be equivalent to the fatigue damage caused by the same 

number of passages of the proposed 3-axle fatigue truck (see Figure 3.5), while a 4-axle 

fatigue truck (see Figure 3.6) was proposed to model the fatigue damage caused by trucks 

with 10–11 axles.  WIM data, with more detailed information about the percentage of 

trucks of different axles, are needed in order to use this dual fatigue truck model.  The 

equivalent stress range, SRE, for the dual fatigue truck model can be expressed as: 

 [ ] m
RE

m
RERE SSS /1  m

4433   ⋅+⋅= γγ  (3.41) 

where γ3 is the fraction of 2-9 axle trucks in ADTT; γ4 is the fraction of 10-11 axle trucks 

in ADTT; SRE3 is the equivalent stress range generated by the proposed 3-axle fatigue 

truck; and SRE4 is the equivalent stress range generated by the proposed 4-axle fatigue 

truck.  According to the study by Laman and Nowak (1996), the AASHTO fatigue truck 

model might overestimate the fatigue damage of bridges with a simple span shorter than 

40 to 60 feet and underestimate the fatigue damage for bridges with longer spans.  The 

dual fatigue truck model is site-specific and needs to be characterized by the load spectra 

for the bridge. 
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Figure 3.5: The Laman’s Three-Axle Fatigue Truck Model 

 

 

 

Figure 3.6: The Laman’s Four-Axle Fatigue Truck Model 

 

3.5 CONCLUDING REMARKS 

Three methods for modeling fatigue loadings in steel bridges were presented in 

this chapter.  The objective of each of these three methods is to derive the equivalent 

stress range for a given bridge detail.  The stress spectrum analysis can provide the most 

accurate evaluation of the equivalent stress range for the detail of interest.  However, 

collecting stress data using strain gages is costly as well as difficult or restrictive for 
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complex details.  One way to circumvent this problem is to convert the stress data 

collected from one detail to other details that have no strain gages installed, but this 

conversion may lead to large errors.  With limited statistical information, the equivalent 

stress range for a detail can also be obtained using the assumed distribution analysis.  

The ASCE Committee on Fatigue and Fracture Reliability (1982a-d) suggested use of the 

Rayleigh, Weibull, Beta, Polynomial, and lognormal distributions for fatigue analysis.  

Closed-form expressions for the equivalent stress range derived from these assumed 

distributions were presented in this chapter.  Fatigue truck analysis provides a simple 

and convenient method for acquiring the equivalent stress range for a bridge detail.  

However, from the collected field data in Michigan studied by Laman and Nowak (1996), 

it was found that the fatigue truck model was site-specific due to the traffic variability at 

different sites.  Hence, though the AASHTO fatigue truck model gives a suitable 

equivalent stress range for design purposes, for fatigue analysis, more accurate evaluation 

of equivalent stress ranges might likely come from analysis using Moses’ fatigue truck 

model (Moses et al, 1987), which was built on GVW spectrum analyses from field 

vehicle data. 
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Chapter 4:  FATIGUE RELIABILITY ANALYSIS FOR 
FRACTURE-CRITICAL MEMBERS IN STEEL BRIDGES 

The objective of this chapter is to apply structural reliability theory to evaluate the 

safety of fracture-critical members or details in steel bridges under fatigue loadings over 

the course of the service life of the bridge.  Structural reliability analysis and fatigue 

load modeling to establish equivalent stress ranges are employed in the development of a 

systematic approach for evaluating the fatigue reliability of details in steel bridges.  For 

those details that are standard enough so as to be classified according to the AASHTO 

fatigue categories, the AASHTO fatigue analysis approach that applies a limit state 

function based on Miner’s Rule (with an empirical S-N curve relation based on fatigue 

test results) is used to evaluate the fatigue reliability.  For those details not conveniently 

identified as representative of any AASHTO fatigue category, the LEFM-based fatigue 

reliability approach that applies a limit state function related to crack size and based on a 

damage accumulation function proposed by Madsen et al. (1985) is used.  A decrease in 

fatigue reliability with an increase in the cumulative number of stress cycles experienced 

by the fracture-critical member will thus be modeled.  This decreasing reliability can 

then be compared with the prescribed target reliability level (or, equivalently, with the 

prescribed minimum acceptable level of structural safety for the bridge) and can provide 

useful information needed in inspection scheduling.  If the fatigue reliability of the 

detail is higher than the target reliability over the entire service life, periodic routine 

inspections, such as visual inspections, may be sufficient.  However, if the fatigue 

reliability falls below the target reliability at any time during the service life, refinements 

in both they type of inspection techniques and in the frequency (with a possibly non-

periodic inspection schedule) may be necessary to ensure adequate safety. 
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4.1 TARGET RELIABILITY 

The target reliability index, βtarget, is defined as the minimum safety level 

approved and accepted for a specific application.  In the present situation, this value can 

be applied as a standard against which one might measure safety of the bridge from the 

point of view of fatigue failure that initiates at a specified detail on the bridge.  The 

target reliability index, βtarget, can be expressed in terms of the inverse of the cumulative 

distribution function of a standard Gaussian random variable, Φ−1( ), and a maximum 

acceptable probability of failure, PF : 
 )1(1

target FP−Φ= −β  (4.1) 

Note that the use of the target reliability index, βtarget, is only done for convenience in 

describing results in this study.  It is possible to establish and use a maximum acceptable 

probability of failure instead without affecting the formulation of the reliability analyses 

or the optimal inspection scheduling procedures to be described.  The use of βtarget as a 

starting point is in fact often tied to notions of probability (such as requiring βtarget to be 

such that there is only a small probability of failure, such as 1 in 10,000). 

It is important to note that the higher the target reliability index employed for a 

detail, the safer that detail will be over the service life.  At the same time, however, it 

will be more expensive to maintain this higher safety level due to possible additional 

inspections and repairs that might be necessary for the detail.  Hence, there is a tradeoff 

between the value of the target reliability index and the costs involved.  Skjong and 

Bitner-Gregersen (2002) suggested that selection of a target reliability index should 

depend on failure consequences, should calibrate against known cases that are felt to be 

acceptable in the industry, and should be based on accepted decision analysis techniques.  

Several studies have been conducted on this topic in the offshore industry; however, there 



 59

are very few similar studies for bridges.  By performing a series of redundancy analyses, 

Onoufriou (1999) proposed several target reliability index values associated with 

different failure consequences for offshore structures (see Table 4.1).  These estimates 

are considered to be conservative for North Sea jacket structures. 

For offshore structures, life loss is generally considerably smaller and financial 

losses considerably larger than for steel bridges.  The criticality of a bridge and its 

degree of redundancy in a transportation network will greatly influence the selection of a 

target reliability index as will the available budget, the traffic, and the consequences of a 

failure.  In this dissertation that deals with steel bridges, a target reliability index value 

of 3.7 which corresponds to a probability of failure of 10-4 is employed in most of the 

numerical studies. 

 

Table 4.1: Target Reliability Index Values for North Sea Jacket Structures (Onoufriou, 
1999). 

Failure Consequence Target Reliability Index  
βtarget 

Failure Probability  
PF 

Very Serious 4.27 10-5 

Serious 3.72 10-4 

Not Serious 3.09 10-3 

Local Effect 2.33 10-2 

Negligible Effect 1.28 10-1 
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4.2 AASHTO FATIGUE RELIABILITY APPROACH 

The AASHTO fatigue reliability analysis approach is proposed for all structural 

members or details that are classified according to AASHTO fatigue categories.  This 

approach is based on the AASHTO S-N curves, Miner’s damage accumulation rule, and 

statistical information collected from numerous fatigue tests conducted in the 1970s when 

fatigue design provisions were being established in the United States.  The AASHTO 

fatigue reliability approach is not applicable for analyzing AASHTO category details that 

contain cracks or flaws because of the limitation of the employed limit state function 

which does not take into consideration crack propagation in the analysis.  The LEFM 

fatigue reliability approach, discussed in Section 4.3, can help in evaluating the fatigue 

reliability of flawed or cracked details that are classified according to AASHTO fatigue 

categories.  It can also help in evaluation of any non-AASHTO category details. 

 

4.2.1 Limit State Function 

The limit state function employed in the AASHTO fatigue reliability approach is 

defined as follows: 

 ( ) NNg c −=X  (4.1) 

where Nc is the critical number of stress cycles it takes for the specified detail to achieve 

fatigue failure, and N is the total accumulated number of stress cycles applied on the 

detail.  By definition, g(X) > 0 implies that the detail has not failed due to fatigue; 

failure is assumed to occur when g(X) ≤ 0.  It can be seen that the limit state function, 

given by Equation 4.1, is directly related to the number of stress cycles. 
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Combining the AASHTO S-N relation (Equation 2.19) and Miner’s damage 

accumulation rule (Equation 2.20) for fatigue details under variable-amplitude stress 

ranges, the following expression can be obtained. 
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where D is Miner’s damage accumulation index; ni is the actual number of stress cycles 

associated with the stress range level, SR,i; Nc,i is the critical number of stress cycles that 

the detail can sustain under the constant-amplitude stress range, SR,i; γi is the ratio of ni to 

the total number of accumulated stress cycles, N, in the detail; A is a fatigue detail 

constant parameter in the AASHTO S-N relation; m is the fatigue exponent in the S-N 

curve (see Equation 2.19); and SRE is the Miner’s equivalent stress range defined from the 

stress spectrum for the specified detail as discussed in Chapter 3. 

According to Miner’s rule (1945), fatigue failure occurs when the damage 

accumulation index, D, reaches a critical value, ∆. 

 ∆≥D  (4.3) 

where ∆ (Miner’s critical damage accumulation index) has a value approximately equal 

to 1.0 for metallic materials.  Combining Equations 4.2 and 4.3, the critical number of 

stress cycles, Nc, needed for fatigue failure under variable-amplitude loading with 

equivalent stress range, SRE, can be expressed as: 

 m
RE

c S
AN ∆⋅

=  (4.4) 

Hence, the limit state function for the AASHTO fatigue reliability approach can 

be rewritten as:  

 N
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⎞
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⎝

⎛ ∆⋅
=)(X  (4.5) 

Since the fatigue detail parameter, A, and Miner’s critical damage accumulation 

index, ∆, are obtained from experiments, they can be treated as random variables with 
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statistical characteristics estimated from fatigue tests.  The equivalent stress range, SRE, 

can be obtained by any suitable method described in Chapter 3.  The accumulated 

number of stress cycles, N, is related to the traffic volume, particularly truck traffic 

volume, passing over the bridge and can be transformed into the number of years in 

service, Y; however, the transformation from N to Y must, in general, account for 

uncertainty in the traffic.  Fatigue reliability analysis can be implemented using the limit 

state function (Equation 4.5) when the related variables are completely described.  A 

description of all of these related variables is presented next. 

 

4.2.2 Studies of Related Variables in the Limit State Function 

4.2.2.1 Fatigue Detail Parameter, A 

When the AASHTO S-N relation (Equation 2.19) is expressed in logarithmic 

form or in a plot of log10Nf versus log10SR, the fatigue detail parameter, A, is seen to be 

the log10Nf -axis intercept and m is the magnitude of the slope of this line, since we have: 
 ASmN Rf 101010 logloglog +⋅−=  (4.6) 

Keating and Fisher (1986) studied extensive fatigue data of 800 full-sized and welded 

steel bridge details that were tested over a period of 6 years from 1966 to 1972 in the 

United States.  Through regression analyses, they estimated the parameters, log10 A and 

m, for the different fatigue categories.  Results from this study are summarized in Table 

4.2. 
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Table 4.2: Regression Coefficients of the Fatigue Detail Parameter, A, and Slope, m. 

Intercept, log10 A AASHTO 
Fatigue Category Mean Value ( A10logµ ) Standard Deviation ( A10logσ ) 

Slope m 

A 11.121 0.221 3.178 

B 10.870 0.147 3.372 

C 10.085 0.158 3.097 

C’ 10.038 0.063 3.250 

D 9.664 0.108 3.071 

E 9.292 0.101 3.095 

E’ 9.166 0.194 3.200 

 

In addition, Fisher et al. (1970) studied fatigue test data from 374 steel beams and 

concluded that log10Nf can be assumed to follow a normal distribution.  Hence, log10 A is 

also assumed to follow a normal distribution and A therefore follows a lognormal 

distribution.  The mean value, µA, standard deviation, σA, and coefficient of variation, 

δA, of the parameter, A, are calculated in Table 4.3 using the following transformation: 

 )2/( 2
AAeA

ζλµ +=  (4.7) 

 )1(
22 −⋅= AeAA

ζµσ  (4.8) 

 )( AAA µσδ =  (4.9) 

where:  
 AAA 10logln 10ln µµλ ⋅==  (4.10) 

 AAA 10logln 10ln σσζ ⋅==  (4.11) 

 AA 10log10lnln ⋅=  (4.12) 
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Table 4.3: Mean Value, Standard Deviation, and Coefficient of Variation for the 
Fatigue Detail Parameter, A. 

Fatigue Category Mean Value µA Std. Deviation σA COV δA 

A 1.50×1011 8.18×1010 0.54 

B 7.85×1010 2.74×1010 0.35 

C 1.30×1010 4.89×109 0.38 

C’ 1.10×1010 1.61×109 0.15 

D 4.76×109 1.20×109 0.25 

E 2.01×109 4.74×108 0.24 

E’ 1.62×109 7.63×108 0.47 

 

4.2.2.2 Miner’s Critical Damage Accumulation Index, ∆ 

In order to study Miner’s critical damage accumulation index, ∆, at fatigue failure 

for steel structures, Wirsching et al. (1987) and Wirsching and Chen (1988) surveyed the 

fatigue test data from Schilling et al. (1974), Schütz (1979), Berge and Eide (1981), 

Holmes and Kerr (1982), Shin and Lukens (1983), and Gurney (1983) and found that a 

lognormal distribution with a mean value, µ∆, of 1.0 and coefficient of variation, δ∆, of 

0.3 is a reasonable model to describe Miner’s critical damage accumulation index, ∆.  

This represents the uncertainty associated with the use of Miner’s rule.  A lognormal 

distribution model for ∆ has been extensively applied in offshore and other engineering 

applications dealing with fatigue problems involving variable-amplitude stress ranges. 

 

4.2.2.3 Accumulated Number of Stress Cycles, N, and Number of Years in Service, Y 

In Equations 4.1 and 4.5, the limit state function there is defined in terms of the 

accumulated number of stress cycles, N, directly.  Generally, however, we are more 
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interested in the fatigue reliability associated with a specified number of years in service.  

Therefore, a relationship between the accumulated number of stress cycles, N, and the 

corresponding number of years in service, Y, needs to be developed. 

The passage of single trucks on steel bridges is the primary source of cyclic 

loading that can generate stress cycles and can cause fatigue damage (Moses et al., 1987).  

In addition, the support structure and the span length also influence the number of stress 

cycles produced by the passage of a single truck across the bridge.  Truck passages and 

number of years in service are related to the accumulated number of stress cycles as 

follows: 

 ( ) YCADTTYN sSL ⋅⋅⋅= 365  (4.13) 

where ADTTSL is the single-lane average daily truck traffic on the bridge; Cs is the stress 

cycles per truck passage for the bridge span where the detail of interest is located; and Y 

is the number of years in service for the bridge.  The parameter, Cs, can be obtained 

from the AASHTO specifications, as was shown in Table 2.4.  According to the 

AASHTO LRFD Specifications (1998), the ADTTSL (in Equation 4.13) for a bridge can 

be estimated by multiplying the average daily truck traffic (ADTT) by p, a factor that 

accounts for the number of lanes available to trucks, as shown in Table 2.3.  The ADTT 

of the bridge can be obtained from site surveys of the bridge, typically collected by the 

bridge authority. 

Both ADTT and Cs can be taken as random variables in the fatigue reliability 

analysis.  Moses et al. (1987) suggested that ADTT and Cs can be treated as lognormally 

distributed random variables with coefficients of variation of 0.1 and 0.05 for ADTT and 

Cs, respectively.  Mean values for ADTT and Cs are estimated by the methods described 

in the previous paragraph. 
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If allowance for the growth of truck traffic with time is to be considered, a 

growing ADTT model can be formulated and a relationship between the accumulated 

number of stress cycles (N) and the number of years in service (Y) can be expressed as 

follows: 

 ( ) ( )YrADTTYADTT +⋅= 10  (4.14) 

 ( ) ( ) ( )
( )∫ ⎥

⎦

⎤
⎢
⎣

⎡

+
−+

⋅⋅⋅=⋅⋅=
Y

Y

ss r
rADTTCdyyADTTCYN

0 0 1ln
11365365  (4.15) 

where ADTT0 is the average daily truck traffic in the first year in service and r is the 

annual truck traffic growth rate.  Both ADTT0 and r can be taken as random variables in 

the fatigue reliability analysis when data on truck traffic growth for the bridge are 

available. 

The influence of ADTT modeling assumptions on the evaluation of fatigue 

reliability will be discussed in the following section. 

 

4.2.3 Evaluation of the Fatigue Reliability Index, β 

With the limit state function defined in Equations 4.1 and 4.5 for the AASHTO 

fatigue reliability approach, the fatigue failure event of a detail is defined by cases where: 

 ( ) 0≤Xg  (4.16) 

The probability of fatigue failure, PF, for the detail in question can then be evaluated and 

related to a fatigue reliability index, β, using the following relationship: 

 ( )( ) ( )β−Φ=≤= 0XgPPF  (4.17) 

where Φ( ) is the cumulative distribution function of a standard normal random variable.  

Similarly, the fatigue reliability index for a given probability of fatigue failure may be 

expressed as: 

 ( )( )[ ]01)1( 11 ≤−Φ=−Φ= −− XgPPFβ  (4.18) 
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where Φ−1( ) is the inverse cumulative distribution function of a standard normal random 

variable. 

Employing lognormal distribution models for A and ∆ in the limit state function 

(Equation 4.5), and applying random variable transformations (see Appendix A), the 

fatigue reliability index, β, can be directly expressed as: 

 ( ) ( ) ( )
22

lnln

A

REA NSm
ζζ

λλβ
+

−⋅−+
=

∆

∆  (4.19) 

where the parameters, λ∆, λA, ζ∆, and ζA are given in terms of the mean value and the 

coefficient of variation of A and ∆ as follows: 

 ( ) 2ln 2
AAA ζµλ −=  (4.20) 

 ( ) 2ln 2
∆∆∆ −= ζµλ  (4.21) 

 )1ln( 2
AA δζ +=  (4.22) 

 )1ln( 2
∆∆ += δζ  (4.23) 

Equation 4.19 represents the fatigue reliability index of a detail under the condition that 

no repairs and inspections are performed during the service life while stress cycles are 

being experienced.  Hence, for a given equivalent stress range SRE, and for given values 

of the mean and COV of A and ∆, one can easily express the fatigue reliability of a detail 

as a function of the number of stress cycles accumulated. 

Substituting the values of the mean and COV of A and ∆ as described in Sections 

4.2.2.1 and 4.2.2.2 into Equation 4.19, Figures 4.1 to 4.3 can be drawn so as to 

demonstrate the changing fatigue reliability versus accumulated number of stress cycles 

(ranging from 0 to 107 cycles) under various constant-amplitude stress range levels for 

the details defined by AASHTO fatigue categories, A, C, and E.  The influence of three 

factors – the number of stress cycles, the stress range level, and the fatigue category – on 

fatigue reliability is evident in the figures.  It can be seen that fatigue reliability is a non-
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increasing function of the accumulated number of stress cycles; the larger the number of 

stress cycles, the lower is the fatigue reliability and the higher is the probability of fatigue 

failure.  For each fatigue category, higher stress range levels lead to a decrease in the 

fatigue reliability.  In addition, the more severe the fatigue category (category severity: 

E > C > A), the lower is the fatigue reliability for any stress range level. 

In this dissertation, a target reliability (βtarget) value of 3.7, which corresponds to a 

probability of failure of 10-4.  This target level is shown in all of the plots in Figures 4.1 

to 4.3.  The actual fatigue reliability of a specified fracture-critical member will 

generally be compared with this target reliability to yield information that can help in 

scheduling of inspections.  If the fatigue reliability of the selected detail is higher than 

the target reliability during the entire service life, only routine inspections are needed.  

However, if the fatigue reliability of the detail falls below the target reliability level 

during the service life, carefully scheduled and detailed inspections may be required.  

For those details whose fatigue reliability falls below the target reliability during the 

service life, an option is to apply optimal fatigue inspection scheduling to keep the safety 

above the acceptable level during the entire service life.  Details related to reliability-

based optimal inspection scheduling method are presented in Chapter 5. 
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Figure 4.1: Fatigue Reliability for Category A Details under Various Stress Range 

Levels. 
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Figure 4.2: Fatigue Reliability for Category C Details under Various Stress Range 

Levels. 
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Figure 4.3: Fatigue Reliability for Category E Details under Various Stress Range 

Levels. 

 

If ADTT and Cs in Equation 4.13 are considered as lognormally distributed 

random variables, as was described in Section 4.2.2.3, and used to model the relationship 

between the accumulated number of stress cycles, N, and the number of years in service, 

Y, a closed-form expression for the fatigue reliability index can be derived as follows: 

 
( ) ( ) ( ) ( )
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where the parameters, ADTTλ , 
sCλ , ADTTζ , and 

sCζ , are given as follows: 

 ( ) 2ln 2
ADTTADTTADTT ζµλ −=  (4.25) 

 ( ) 2ln 2
sss CCC ζµλ −=  (4.26) 

 )1ln( 2
ADTTADTT δζ +=  (4.27) 

 )1ln( 2
ss CC δζ +=  (4.28) 
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For a given slope m, a given equivalent stress range level, SRE, and for given values of the 

mean and COV of A, ∆, ADTT and Cs, the fatigue reliability of a detail can be described 

as a function of the number of years in service. 

If the ADTT growth model defined in Equation 4.14 is employed to describe the 

relationship between the accumulated number of stress cycles, N, and the number of 

years in service, Y, a closed-form expression for β,  as was possible in Equation 4.24, 

cannot be obtained due to the nature of the limit state function.  The First Order 

Reliability Method (FORM) or a Monte Carlo simulation scheme can, however, be 

utilized in order to numerically estimate β or PF. 

 
*For ADTT growth model, the mean values of ADTT 0 and r  are 72 and 5% respectively.
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Figure 4.4: Fatigue Reliability for a Category E Detail with SR = 5 ksi based on Three 

Different ADTT Modeling Assumptions. 

Figure 4.4 shows fatigue reliability curves for a category E detail with a stress 

range of 5 ksi obtained by employing three different ADTT models – a constant ADTT 

model, a lognormal ADTT model, and an ADTT model that includes a growth factor.  
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Both the constant and the lognormal ADTT models utilize Equation 4.13 to describe the 

relationship between N and Y.  The ADTT growth model employs Equation 4.14 to 

describe a growing ADTT with time, and assumes that the initial ADTT value, ADTT0, 

and the annual truck traffic growth rate, r, can be modeled as random variables.  

Pertinent information for all the variables in the three ADTT models is summarized in 

Table 4.4. 

Table 4.4: Pertinent Variables in the Three ADTT Models. 

 Variable Variable Type Mean COV 
Constant ADTT Model ADTT constant 300 – 

Lognormal ADTT Model ADTT lognormal 300 0.3 
ADTT0 lognormal 72 0.3 

ADTT Growth Model 
r normal 5% 0.3 

 

ADTT(Y) = ADTT 0(1+r )Y
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Figure 4.5: Comparison of the Constant ADTT Model (ADTT=300) with the ADTT 

Growth Model (ADTT0=72, r = 5%). 
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Figure 4.5 compares a constant ADTT model (ADTT = 300) with an ADTT 

growth model where the initial ADTT value (ADTT0) is constant and an annual truck 

traffic growth rate (r) is assumed.  It is noted that both models experience the same 

accumulated number of truck passages after 50 years in service.  The three fatigue 

reliability curves described as a function of years in service, Y, are based on the same 

fatigue reliability curves described as a function of the number of stress cycles, N, as 

shown in Figure 4.3.  In the lognormal ADTT model, the fatigue reliability curve is 

lower than the fatigue reliability curve for the constant ADTT model, which means that 

uncertainty in ADTT decreases the fatigue reliability.  In the ADTT growth model, the 

fatigue reliability is higher than the fatigue reliability of the constant ADTT model in the 

first few years in service due to the lower initial ADTT value, but the increasing ADTT 

and truck passage accumulation in the ADTT growth model accelerate the decrease in 

fatigue reliability with time and cause the fatigue reliability in the ADTT growth model 

to fall below the fatigue reliability for the constant ADTT model after 12 years in service.  

As can be seen in Figure 4.4, it is the ADTT model, which establishes a relationship 

between N and Y, that affects how the fatigue reliability varies as a function of number of 

years in service, Y.  Note that the ADTT model simply works with the same fatigue 

reliability curves defined based on the AASHTO category and expressed as a function of 

the number of stress cycles, N; differences in fatigue reliability expressed as a function of 

Y result only because each ADTT model relates N to Y differently. 

 

4.2.4 Selection of the Target Reliability Index, βtarget 

Considering Figures 4.1 to 4.3, one can see that in many instances, especially at 

the higher stress range levels, the reliability curve reaches the target reliability index, 

βtarget, in a finite number of stress cycles, Ntarget.  Thus, Ntarget can be thought of as a 
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warning point in the life of the detail of interest.  Immediate and detailed inspections 

should be implemented at this time to detect any existing cracks because the fatigue 

reliability of the detail has become unacceptable from a safety viewpoint after Ntarget 

cycles have occurred.  In the β versus N diagrams, the intersection of the reliability 

curve with the horizontal target reliability line helps to determine Ntarget.  Typically, the 

higher the target reliability (βtarget), the smaller will be the number of stress cycles, Ntarget, 

it takes to reach this target reliability.  In this dissertation, the target reliability is 

selected to be 3.7, which corresponds to a probability of failure of 10-4.  With this target 

reliability, it is possible to compare the values of Ntarget for each fatigue category under 

various stress ranges with the implied fatigue life, NLRFD, based on an AASHTO LRFD 

S-N analysis to see if this target reliability provides realistic values of Ntarget.  Based on 

the AASHTO S-N curves, NLRFD can be obtained as follows: 

 3LRFD
RES
ΑN =  (4.29) 

where Α is the fatigue detail parameter as given in the AASHTO LRFD Specifications 

and presented in Table 2.2. 

The values of Ntarget associated with a target reliability index of 3.7 for details in 

fatigue category E’ under various stress range levels are compared with NLRFD in Table 

4.5.  A representative β versus N diagram for details in fatigue category E’ showing a 

comparison between Ntarget and NLRFD is presented in Figure 4.6.  Figure 4.6 and Table 

4.5 reveal that the Ntarget value for fatigue category E’ is always smaller than NLRFD.  

This same conclusion was drawn based upon analysis for all of the other fatigue 

categories – namely, A, B, C, C’, D, and E.  Hence, since the fatigue life estimated from 

an AASHTO LRFD S-N curve analysis is regarded as a conservative lower bound of the 

detail’s actual fatigue life, the number of stress cycles that it takes to reach the target 

reliability index of 3.7 can be considered as a warning point in the life of the fatigue 
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detail in any category.  Preventive measures taken at this time can help to avoid failures 

due to fatigue.  It should be remembered that the time until Ntarget cycles are completed 

or while the fatigue reliability is above the target reliability does not correspond to a 

period when the detail is unlikely to fail due to fatigue.  Rather, it means that during this 

period, the probability of fatigue failure is lower than the target probability of failure, i.e., 

lower than Φ(−βtarget).  Routine inspections are still needed during this period to detect 

cracks or flaws that could lead to subsequent failure. 

Table 4.5: Comparison of the Number of Stress Cycles (Ntarget) until the Target 
Reliability is Reached with the AASHTO LRFD Fatigue Life (NLRFD) for 
Various Stress Ranges (SR) – Category E’ Details. 

SR (ksi) Ntarget (cycles) NLRFD (cycles) Ntarget < NLRFD ? 
2 2.11E+07 4.88E+07 Yes 
4 2.30E+06 6.09E+06 Yes 
6 6.28E+05 1.81E+06 Yes 
8 2.50E+05 7.62E+05 Yes 

10 1.22E+05 3.90E+05 Yes 

LRFD Fatigue Life
14.4M Cycles

N target

5.77M Cycles

β target = 3.7
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Figure 4.6: Comparison of the Number of Stress Cycles (Ntarget) until the Target 
Reliability is reached with the AASHTO LRFD Fatigue Life (Category E’ 
Details, with SR = 3 ksi). 
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4.2.5 Example Study – Yellow Mill Pond Bridge 

A cover plate detail in the Yellow Mill Pond Bridge in Connecticut studied by 

Fisher (1984) is utilized here as an example to demonstrate the AASHTO fatigue 

reliability approach.  The Yellow Mill Pond Bridge complex, opened to traffic in 

January 1958, consists of 14 consecutive simple span cover-plated steel and concrete 

composite beam bridges crossing the Yellow Mill Pond Channel at Bridgeport in 

Connecticut.  The plan, elevation, and a typical cross section of the bridge are shown in 

Figure 4.7.  In June 1976, non-destructive inspections including visual, magnetic 

particle, dye penetrant, and ultrasonic techniques were employed to monitor fatigue 

cracking in the cover-plate details in the eastbound and westbound bridges of Span 10.  

Twenty-two out of forty cover plate details were discovered to have fatigue cracks with 

crack lengths ranging from 0.25 in. to 12 in. (see Figure 4.8). 

A cover plate detail (see Figure 4.9) in Span 10 was analyzed by Fisher (1984) to 

explain the occurrence of cracks in these details on the Yellow Mill Pond Bridge. Field 

surveys showed that the equivalent stress range (SRE) in the detail, evaluated from the 

stress range spectrum, was 1.9 ksi.  This variable stress spectrum corresponded to 1.8 

cycles per truck passage, with a total of approximately 35 million trucks crossing the 

span between 1958 and 1976.  As a result, the accumulated total number of stress cycles 

on the detail until 1976 was estimated at about 63 million.  This cover plate detail falls 

under fatigue category E’ according to the AASHTO fatigue categories; hence, the 

AASHTO LRFD fatigue life, NLRFD, for this detail would have been evaluated as: 

 6
3

8

LRFD 1057601,859,56
9.1
109.3

×≈=
×

=N (cycles) (4.30) 

The “safe” fatigue life, NMoses, based on Moses et al. (1987) for this detail would have 

been evaluated as: 
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( )

6
3

6

Moses 1024589,791,23
9.135.1

365101.11
×≈=

×
×××

=N (cycles) (4.31) 

 

 

Figure 4.7: Plan, Elevation, and Typical Cross Section of the Yellow Mill Pond Bridge 
(Fisher, 1984). 

 

 

Figure 4.8: Fatigue Cracks at Cover Plate Details in the Yellow Mill Pond Bridge 
(Fisher, 1984). 
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Figure 4.9: The Chosen Cover Plate Detail for Analysis. 

 

Based on the field survey information, the fatigue reliability of this cover plate 

detail was evaluated using Equation 4.19 and is illustrated in Figure 4.10 as a function of 

the number of stress cycles.  It can be seen that, for this detail, the number of stress 

cycles that it takes to reach the target reliability index of 3.7 is 29 million, which is 

greater than Moses’ fatigue life (24 million cycles) but less than the AASHTO LRFD 

fatigue life (57 million cycles) and the actual total number of accumulated stress cycles 

until 1976 (63 million).  Thus, the point in time when Ntarget cycles have been 

accumulated can serve as a point after which meticulous inspections may be warranted so 

as to detect any fatigue cracks or flaws before the detail develops a much deeper fatigue 

crack or even has a fatigue fracture.  In fact, a large amount of funds was spent in 1981 

at the Yellow Mill Pond Bridge to retrofit 427 cracked cover plate details by peening, gas 

tungsten arc remelting, or use of bolted splices.  If these cover plate details had been 

carefully inspected after Ntarget cycles had been accumulated, the cracks might have been 

detected at an earlier stage and far less funds would have been needed to repair these 

details. 
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Figure 4.10: Fatigue Reliability of a Cover Plate Detail in the Yellow Mill Pond Bridge. 
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4.3 LEFM FATIGUE RELIABILITY APPROACH 

A linear elastic fracture mechanics (LEFM) reliability analysis approach is 

proposed in order to address shortcomings of the AASHTO fatigue reliability approach 

which does not take into account the sizes of any existing cracks.  For details that do not 

clearly belong to any of the eight AASHTO fatigue categories or for AASHTO fatigue 

category details where cracks are known to be present, the LEFM approach provides a 

convenient method for evaluating the fatigue reliability of a detail.  This reliability 

approach is based on linear elastic fracture mechanics principles and employs Paris’ law 

to describe fatigue crack propagation.  Material properties for describing Paris’ law, 

crack geometry functions for evaluating the stress intensity factor, as well as initial and 

critical crack sizes at the detail being studied need to be provided in order to employ this 

fatigue reliability analysis approach. 

 

4.3.1 Limit State Function 

Madsen et al. (1985) proposed a fatigue limit state function that was developed 

using Paris’ Law and linear elastic fracture mechanics (LEFM) principles.  On the basis 

of results from numerous metal fatigue experiments, Paris and Erdogan (1963) proposed 

a relationship (see Equation 2.30) between the rate of crack growth and the stress 

intensity range as follows: 

 ( )m∆KC
dN
da

⋅=  (4.32) 

where a is the crack size; N is the number of stress cycles; C and m are material 

properties affecting fatigue; and ∆K is the stress intensity range which can be expressed 

as Equation 4.33 (similar to Equation 2.29 presented earlier) using linear elastic fracture 

mechanics: 
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 ( ) aSaFK RE π⋅⋅=∆  (4.33) 

where F(a) is a function accounting for the shape of the specimen and the crack geometry 

and SRE is the far-field equivalent stress range on the detail. 

By substituting Equation 4.33 into Equation 4.32 and rearranging terms, it is 

possible to relate the accumulated number of stress cycles (from an initial number, N0, to 

a final number, Nf) to a corresponding change in crack size of the detail from a0 to af: 

 
( )[ ] ( )0

0

NNSC
πaaF

da
f

m
RE

a

a  m
f −⋅⋅=

⋅
∫  (4.34) 

In Equation 4.34, a0 and af are the initial and final crack sizes while N0 is the number of 

accumulated stress cycles it takes to for a crack to grow to a size, a0, and Nf is the number 

of stress cycles it takes for the crack to grow to a size, af. 

Using the left hand side of Equation 4.34, Madsen et al. (1985) defined a damage 

accumulation function ψ(a1, a2) that accounts for fatigue damage related to change in 

crack size from a1 to a2: 

 ( )
( )[ ]∫= 2

1
  21ψ

a

a m
aaF

da,aa
π

 (4.35) 

Therefore, ψ(a0,ac) represents the fatigue damage accumulation associated with crack 

growth from an initial size, a0, to a critical size, ac, while ψ(a0,aN) corresponds to fatigue 

damage accumulation from a0 to a crack size, aN, after N stress cycles.  For a specified 

crack geometry and material, ac represents a limit associated with fracture; hence, 

ψ(a0,ac) is a critical damage accumulation level for the material and detail.  The limit 

state function proposed by Madsen et al. (1985) employed ψ(a0,ac) as a resistance (or 

capacity) term and ψ(a0,aN) as a loading term as follows: 

 ( ) ( )Nc aa,aag ,ψψ)( 00 −=X  (4.36) 

where using Equation 4.34, we can express ψ(a0,ac) and ψ(a0,aN) as follows: 
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 ( )
( )[ ]∫= ca

a mc
aaF

da,aa
0

  0ψ
π

 (4.37) 

 ( ) ( )00ψ NNSC,aa m
REN −⋅⋅=  (4.38) 

Hence, the limit state function for the LEFM fatigue reliability approach can be rewritten 

as follows: 

 
( )[ ] ( )0

0

)( NNSC
aaF

dag m
RE

a

a m
c −⋅⋅−= ∫

π
X  (4.39) 

where, as always, failure in fatigue is assumed to occur when g(X) ≤ 0. 

In terms of the number of years, Y, in service during which the accumulated 

number of stress cycles increased from N0 to Nf, we have: 

 
( )[ ] ( )YCADTTSC

aaF

dag sSL
m
RE

a

a m
c ⋅⋅⋅⋅⋅−= ∫ 365)(

0 π
X  (4.40) 

The geometry function, F(a), of the detail in question can be obtained from 

several sources, including specifications or handbooks discussing stress intensity factors.  

Alternatively, one can use the following equation to directly compute a generalized stress 

intensity factor as was suggested by Albrecht and Yamada (1977): 
 aFFFFK gwse πσ⋅⋅⋅⋅=  (4.41) 

where K is the stress intensity factor; Fe is a crack shape correction factor; Fs is a free 

surface correction factor; Fw is a finite width correction factor; and Fg is a stress gradient 

correction factor.  Numerous exact and empirical solutions for these correction factors 

can be found in the literature.  For more complex details, F(a) can be determined by 

employing various fracture mechanics modeling approaches, including the finite element 

method and other numerical models.  Table 4.6 shows geometry functions for some 

common details in steel bridges. 

 



 83

 

Table 4.6: Fatigue Geometry Functions for some Common Details in Steel Bridges. 

Crack Pattern Geometry Function F(a) 
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4.3.2 Studies of Related Variables in the Limit State Function 

4.3.2.1 Initial Crack Size, a0 

Generally, a statistical distribution for the initial crack size, a0, of a specified 

fatigue detail can be obtained by either a Non-Destructive Evaluation (NDE) method or 

the Equivalent Initial Flaw Size (EIFS) method.  Both methods are commonly applied 

for offshore structures and steel bridges. 

NDE techniques for steel bridges mentioned in the FHWA Bridge Inspector’s 

Training Manual (Hartle et al. (1995)) include Ultrasonic Testing (UT), Magnetic Particle 

Testing (MT), Penetrant Testing (PT), Radiographic Testing (RT), Acoustic Emission 

Testing (AET) and Visual Testing (VT).  Each technique has certain specific details, 

materials, and operating environments where it is best suited for use.  Also, each 

technique has its own detectability limits related to the minimum crack size it will detect.  

Selecting an appropriate NDE technique is very important in estimating the initial crack 

size on a detail.  Due to uncertainties associated with crack detection, the crack size 

measurement from each test of a specified detail will in general not be the same.  Hence, 

a statistical distribution of the initial crack size for the detail has to be obtained based on 

the NDE test data. 

For details with initial crack sizes smaller than the detectability limits of the 

employed NDE technique, the EIFS method provides an alternative way to estimate the 

initial crack size.  This method has been discussed in studies by Rudd and Gray (1977), 

Shinozuka (1979), Yang (1980), Rudd et al. (1982a-c), Yang et al. (1985), and Manning 

et al. (1986) for fatigue analysis.  An equivalent initial crack size obtained from the 

EIFS method is an assumed crack size in a fatigue detail, prior to being put into service, 

as defined by Yao and Furuta (1986).  The equivalent initial crack size can be obtained 
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by back-solving for the a0 value in Equation 4.31 assuming a known critical crack size 

(af), material parameters (C and m), an equivalent stress range (SRE), an initial number of 

stress cycles (N0), and a total number of stress cycles to fatigue failure (Nf).  In fact, this 

solution procedure calibrates the initial crack size so that the LEFM fatigue analysis and 

the S-N fatigue analysis will lead to the same fatigue life in a deterministic fatigue 

analysis.  The fatigue test data sets utilized to establish the S-N curve for a specific 

detail can be employed to obtain the statistical distribution of the equivalent initial crack 

size for the detail.  Yazdani (1984) analyzed such fatigue test data that were used to 

establish the S-N curves for the AASHTO fatigue categories, A, B, C, E, and E’, and 

obtained initial crack size distributions for these different category details.  The mean 

and coefficient of variation values of the initial crack size for various details collected are 

presented in Table 4.7.  These results include crack size statistical information from 

both the NDE method and the EIFS method. 

 



 86

Table 4.7: Initial Crack Size Distributions from Various Sources 

Initial Crack Size a0 
Detail 

Distribution Mean (in) COV 
Reference 

Weld Toe Undercut in Butt Weld Exponential 4.331E-3 1.00 Bokalrud and Karlsen (1982) 

Fillet Welded Joint Lognormal 4.900E-3 0.34 Engesvik and Moan (1983) 

HSLA Rolled Beam Lognormal 1.276E-3 0.45 

HSLA Welded Beam Lognormal 3.472E-2 0.36 

HSLA Transverse Stiffener Lognormal 1.741E-2 0.71 

HSLA Cover Plate Lognormal 1.084E-2 0.80 

HSLA Thick Cover Plate Lognormal 1.843E-2 0.28 

QT Rolled Beam Lognormal 5.100E-5 1.78 

QT Welded Beam Lognormal 9.159E-3 0.47 

QT Transverse Stiffener Lognormal 5.280E-3 0.57 

QT Cover Plate Lognormal 1.700E-4 0.19 

Yazdani (1984) 

Tubular Joint Exponential 4.331E-3 1.00 Kirkemo (1988) 

TLP Joint Lognormal 2.874E-2 1.07 Kountouris and Baker (1989) 

Tubular Joint Lognormal 2.874E-2 1.07 Shetty and Baker. (1990) 

Tubular Joint Exponential 4.331E-3 1.00 Pedersen et al. (1992) 

Butt Weld Lognormal 2.000E-2 0.50 Zhao et al. (1994a) 

Cover Plate Lognormal 2.000E-2 0.50 Zhao and Haldar (1996) 

Stiffener to Bottom Flange Lognormal 2.362E-2 0.10 Cremona (1996) 

30 North Sea Jackets Exponential 3.701E-2 1.00 Moan et al. (1997) 

Stiffener to Bottom Flange Lognormal 4.921E-3 0.36 Lukic and Cremona (2001) 

Butt Weld Lognormal 7.874E-3 0.50 Zhang and Mahadevan (2001) 

Butt Weld Lognormal 7.874E-3 0.20 Righiniotis and 
Chryssanthopoulos (2003) 

Cover Plate Lognormal 2.362E-2 0.40 Righiniotis and 
Chryssanthopoulos (2003) 

Gusset Plate Lognormal 3.937E-3 0.20 Righiniotis and 
Chryssanthopoulos (2003) 

Butt Weld at a Hole Lognormal 3.937E-3 0.20 Righiniotis and 
Chryssanthopoulos (2003) 
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4.3.2.2 Critical Crack Size, ac 

The critical crack size, ac, is the crack size above which fatigue failure is assumed 

to result.  In practical applications, this critical crack size, ac, can be determined by 

using either a fracture mechanics criterion or a serviceability criterion (Zhao, 1995). 

With the fracture mechanics criterion, the critical crack size, ac, is directly related 

to the fracture toughness, Kc, of the material employed and can be estimated by setting K 

equal to Kc in Equation 4.38.  Fracture toughness is a material property commonly 

determined from Charpy V-notch Impact (CVN) tests on simple specimens.  Due to 

uncertainties in the laboratory tests, Kc may be considered to be a random variable.  

Yazdani (1984) analyzed fracture toughness and Charpy V-Notch Impact test data of 

A36, A588, and A514 steels collected by Rippling and Crosley (1983) and proposed a 

truncated normal distribution model to describe Kc for these steels.  The mean and 

coefficient of variation (COV) values of fracture toughness for these steels are 

summarized in Table 4.8.  In addition, fracture toughness for a given material may be 

affected by service temperature, loading rate, and constraint condition (Barsom and 

Rolfe, 1999).  Shetty (1992) suggested that these factors should be considered in 

developing a probability distribution model for fracture toughness.  Suwan et al. (2003) 

analyzed data on plates made of A572 and A588 steels supplied by six steel mills in 

North America and found that variability in CVN test data varied with plate thickness and 

with test temperature.  This would imply that resulting critical crack sizes determined 

from toughness estimates would have similar variability.  Suwan (2002) also studied 

critical crack sizes of A572 and A588 plates of different thicknesses for with through-

thickness cracks, edge cracks, and surface cracks and reported on the variability of 

critical crack sizes in each case. 
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With the serviceability criterion, the critical crack size can be defined as a specific 

crack size at which the fatigue detail fails to meet serviceability requirements.  Usually, 

the critical crack size defined based on the serviceability criterion is more conservative 

than that based on the fracture mechanics criterion.  Zhao (1995) suggested that the 

thickness or width of a detail can be taken as its critical crack size in many cases.  For 

offshore structures, the Health and Safety Executive (UK) Offshore Technology Report 

061 (Aker Offshore Partner, 1999) suggested that wall thickness be taken as the critical 

crack size for steel tubes in fatigue analysis. 

 

Table 4.8: Fracture Toughness Statistics for A36, A588, and A514 Steels (Albrecht et 
al., 1986). 

Steel Type Mean (ksi in ) COV 

A36 40.0 0.18 

A588 45.1 0.19 

A514 70.1 0.24 

 

4.3.2.3 Fatigue Crack Growth Parameters, C and m 

Due to the large variability in data from fatigue experiments, the two crack 

propagation parameters, C and m, in Paris’ law are usually treated as random variables 

and their statistical characteristics can be estimated using regression analyses with 

available fatigue test data.  Table 4.9 represents a compilation of available regression 

estimates of C and m from numerous fatigue tests on various structural steels in the 

United States.  It is satisfactory to treat m as fixed but to retain the uncertainty in C (as is 

done in several references including Aker Offshore Partner (1999) as well as all of the 
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references mentioned in the table) because the nature of Paris’ law is such that it results 

in a high negative correlation (≈ -0.95) between C and m.  Accordingly, Table 4.9 

presents estimates of mean values for both C and m, but it presents COV estimates only 

for C. 

Based on the test data from Klingerman and Fisher (1973), Hirt and Fisher 

(1973), Barsom and Novak (1977), Mayfield and Maxey (1982), and Roberts et al. 

(1986); Yazdani and Albrecht (1989) summarized the crack growth parameters, C and m, 

for Paris’ law (Equation 4.29). for several different uses, as follows: 

For mild and high strength low alloy (HSLA) steels in an air environment: 

 ( ) ( ) 344.31110291.8 K
dN
da

∆⋅×= −  (4.42) 

For mild and high strength low alloy steels (HSLA) in an aqueous environment: 

 ( ) ( ) 279.31010231.2 K
dN
da

∆⋅×= −  (4.43) 

For quenched and tempered steels in air: 

 ( ) ( ) 534.2910174.1 K
dN
da

∆⋅×= −  (4.44) 

For quenched and tempered steels in an aqueous environment: 

 ( ) ( ) 420.2910975.2 K
dN
da

∆⋅×= −  (4.45) 

where the C and m values in Equations 4.42 through 4.45 are their mean values.  The 

table shows that the environment and steel type affect fatigue crack propagation in a 

direct manner.  For the same stress intensity range, an aqueous environment results in a 

higher fatigue growth rate than that in air. Quenched and tempered steels have a higher 

crack growth rate than HSLA steels. 

Table 4.10 shows statistics of the crack propagation parameters, C and m, for 

offshore steels collected from Europe.  Note that a two-stage linear relationship for 

crack growth rate (da/dN) and stress intensity range (∆K) is employed in the British 
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Standard PD6493 (BSI, 1991).  This fatigue crack growth model includes the near-

threshold stage (Stage 1) and the Paris crack growth stage (Stage 2).  For conservatism, 

estimates of C and m from Stage 2 can be applied for the LEFM fatigue reliability 

approach. 

Table 4.11 shows some additional mean and COV estimates for C and m that have 

been collected from various other sources not mentioned in Tables 4.8 and 4.9. 
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Table 4.9: Fatigue Crack Growth Parameter Statistics for Various Steels. 

C 
Steel Type Environment 

mean COV 
m Reference 

A36 
(n=89) Air 9.476E-11 0.221 3.183 Klingerman and Fisher (1973) 

A36, A588 
(n=260) Air 7.831E-11 0.076 3.523 Barsom and Novak (1977) 

Martensitic Air 4.650E-09 − 2.250 Barsom and Rolfe (1999) 

Ferrite-Pearlite Air *3.600E-10 − 3.000 Barsom and Rolfe (1999) 

Austenitic Air *3.000E-10 − 3.250 Barsom and Rolfe (1999) 

X52 
(n=321) Air 5.183E-10 0.140 3.725 Mayfield and Maxey (1982) 

A36, A588 
(n=724) Air 9.344E-11 0.200 3.202 Roberts et al. (1986) 

HSLA steel 
(n=1394) Air 8.291E-11 0.226 3.344 Yazdani and Albrecht (1989) 

A36, A588 
(n=505) Aqueous 2.231E-10 0.150 3.279 Yazdani and Albrecht (1989) 

A514 
(n=372) Air 2.794E-11 0.088 3.026 Barsom and Novak (1977) 

A514 
(n=499) Air 1.324E-11 0.187 2.456 Roberts et al. (1986) 

QT 
(n=871) Air 1.174E-09 0.167 2.534 Yazdani and Albrecht (1989) 

QT 
(n=484) Aqueous 2.975E-09 0.156 2.420 Yazdani and Albrecht (1989) 

1020 (HR) Air 2.960E-10 − 3.070 Hertzberg (1995) 

4130 (QT) Air 3.730E-10 − 2.590 Hertzberg (1995) 

n: number of test data 
*: upper bound 
The units of C assume units of inches for crack size and ksi in  for ∆K 
HSLA: high strength low alloy steel 
QT: quenched and tempered steel 
HR: hot rolled steel 
Aqueous Environment: 3% solution sodium chloride in distilled water 
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Table 4.10: Fatigue Crack Propagation Parameter Statistics for Offshore Steels. 

C 
Environment 

mean COV 
m Reference 

Air 2.587E-10 0.55 3.10 

Air 3.319E-10 0.77 3.50 

DNV 
Classification 

Notes No. 30.2 
(1984) 

Air 7.031E-10 0.55 3.10 

Air 3.319E-10 0.77 3.50 

DNV-RP-404 
(1988) 

Air 1.360E-09 0.10 3.30 Bokalrud and Karlsen 
(1982) 

Air 2.271E-10 0.1 3.10 Cortie and Garrett 
(1988) 

Air 2.418E-10 0.3 3.30 Aaghaakouchak et al. 
(1989) 

Air 3.343E-10 0.25 3.00 Shetty and Baker 
(1990) 

Air, R~0.1 2.478E-10 0.35 3.00 

Air, R>0.5 4.130E-10 0.37 3.00 

Air, R~0.1 
Stage 1 1.786E-15 1.31 8.16 

Air, R~0.1 
Stage 2 4.295E-10 0.35 2.88 

Air, R>0.5 
Stage 1 1.365E-11 1.69 5.10 

Air, R>0.5 
Stage 2 6.324E-10 0.60 2.88 

Seawater, R~0.1 
Stage 1 2.199E-10 0.93 3.42 

Seawater, R~0.1 
Stage 2 5.037E-07 0.26 1.30 

Seawater, R>0.5 
Stage 1 3.937E-10 1.10 3.42 

Seawater, R>0.5 
Stage 2 1.146E-06 0.16 1.11 

BSI 
PD 6493 
(1991) 

Air 4.130E-10 0.54 3.00 BS 7910 
(1997) 

The units of C assume units of inches for crack size and ksi in  for ∆K 
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Table 4.11: Estimates of Mean and COV of C and m from Various References. 

C m 

Mean COV Mean COV
Reference 

1.888E-10 0.50 3.0 0.10 Cramer and Friis-Hansen (1992) 

2.271E-10 0.50 3.1 0.20 Jiao (1992) 

2.271E-10 0.51 3.1 0.00 Moan et al. (1993) 

2.050E-10 0.63 3.0 0.10 Zhao et al. (1994a) 

4.120E-10 0.10 2.9 0.05 Cremona (1996) 

2.591E-10 0.55 3.1 0.00 Hovde and Moan (1997) 

6.323E-10 0.14 2.9 0.00 Lotsberg et al. (1999) 

4.135E-10 0.37 3.0 0.01 Lukic and Cremona (2001) 

4.130E-10 0.54 3.0 0.00 Righiniotis (2004) 

The units of C assume units of inches for crack size and ksi in  for ∆K 

 

4.3.3 Evaluation of Fatigue Reliability 

The probability of fatigue failure, PF, and the fatigue reliability index, β, can be 

obtained by using the limit state function given by Equations 4.36 or 4.39 and by 

evaluating the probability that g(X) ≤ 0 using Equation 4.17.  A closed-form expression 

for β,  as was possible with the AASHTO approach, cannot be obtained due to the nature 

of the limit state function in the LEFM approach.  A Monte Carlo simulation scheme or 

the First Order Reliability Method (FORM) needs to be employed in order to numerically 

estimate β or PF. 
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4.3.4 Example 

A gusset plate-transverse stiffener detail in the Lafayette Street Bridge over the 

Mississippi River in St. Paul, Minnesota, studied by Fisher (1984) is adopted as an 

example to demonstrate the LEFM fatigue reliability approach.  The elevation and cross 

section of the Lafayette Street Bridge are shown in Figure 4.11.  The bridge was opened 

to traffic in November 1968.  Due to fatigue resulting from vehicular loads, a long crack 

in the main girder of Span 10 was discovered in May 1975.  This fatigue crack 

originated in the weld between the gusset plate and the transverse stiffener and 

propagated into the girder web.  Because of the high residual tensile stresses at the 

cracked web location, the stress intensity at that location reached the fracture toughness 

of the material and resulted in a cleavage crack growing up to within 7.5 in. of the top 

flange and fracturing the whole bottom flange (see Figure 4.12). 

The gusset plate-transverse stiffener detail considered in the analysis is shown in 

Figure 4.13.  Field surveys showed that the equivalent stress range (SRE) in the detail 

evaluated from the stress range spectrum was 2.0 ksi.  It is also known that a total of 

approximately 3.3 million trucks crossed the span prior to the time the crack was 

discovered (i.e., between 1968 and 1975).  The gusset plate-transverse stiffener detail is 

not clearly identified as being in any one of listed AASHTO fatigue categories.  Hence, 

the LEFM approach is adopted for the fatigue reliability analysis.  The geometry 

function for the detail analyzed by Fisher (1984) is expressed as: 
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  (4.46) 

where a is the crack size and t is the web thickness, which is equal to 0.5 in. for the detail 

studied. 
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Figure 4.11: Elevation and Cross Section of the Lafayette Street Bridge (Fisher, 1984). 

 

 

 

Figure 4.12: Fatigue Crack in the Gusset Plate-Transverse Stiffener Detail (Fisher, 1984). 
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Figure 4.13: The Gusset Plate-Transverse Stiffener Detail. 

Based on the crack examination by Fisher (1984), the initial crack size, a0, due to 

the lack of fusion weld in the detail was 0.39 in.  The critical crack size, ac, is 

determined to be 0.5 in., which is equal to the web thickness, based on the serviceability 

criterion.  In fact, due to the high residual tensile stresses at the web-stiffener-gusset 

location, this critical crack size of 0.5 in. is very close to the critical crack size defined 

based on the fracture mechanics criterion.  Employing statistical information obtained 

by Fisher (1984), the crack growth parameter, C, is taken to be a lognormally distributed 

random variable with a mean of 2.05×10-10 (with units consistent with crack size in 

inches and ∆K in ksi-in½) and a COV of 0.63; while the crack growth exponent, m, is 

taken to be a normally distributed random variable with a mean and COV of 3.0 and 0.3, 

respectively.  With these parameters, the LEFM fatigue reliability analysis for the gusset 

plate-transverse stiffener detail is carried out using the First Order Reliability Method 
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(FORM).  The computed the fatigue reliability versus number of stress cycles for the 

detail is shown in Figure 4.14.  It can be seen that the number of stress cycles, Ntarget, 

that it takes to reach the target reliability index of 3.7 for the detail is 0.17 million, which 

is almost twenty times less than the total number of stress cycles to failure (3.3 million).  

Hence, the Ntarget, if used for planning detailed inspections of such a gusset plate-

transverse stiffener detail might help prevent a fatigue crack from growing as long as it 

did in this case (7.5 inches). 

The initial crack size of 0.39 in. was observed by Fisher (1984) from examining 

the fractured portion of the detail after the failure.  In most cases, the initial crack size of 

the detail being studied is uncertain and should be treated as a random variable.  If the 

initial crack size, for this detail, were assumed to be lognormally distributed with a mean 

value of 3.937×10-3 in. and a COV of 0.2 suggested by Righiniotis et al. (2003) for gusset 

plate welds (see Table 4.7) and all the other parameters affecting reliability remained the 

same, a revised fatigue reliability curve is obtained as shown in Figure 4.15.  Because 

the mean value of this new assumed initial crack size is almost 100 times smaller than the 

initial crack size of 0.39 in. assumed earlier based on Fisher (1984), it is seen that the 

fatigue reliability curve associated with this smaller mean initial crack size is higher than 

before (compare Figure 4.15 with Figure 4.14).  As a result, the Ntarget value is 2.6 

million cycles now compared to 0.17 million cycles in Figure 4.14.  This Ntarget value of 

2.6 million could still provide a timely warning point to prevent the growth of such long 

fatigue cracks as were found here.  As is clear from Figures 4.14 and 4.15, the initial 

crack size affects the fatigue reliability of a detail in a direct manner.  The larger the 

initial crack size is, the lower will be the fatigue reliability over the service life, which 

will in turn lead to a smaller Ntarget value.  Without accurate information on the initial 

crack size, an assumed initial crack size distribution for the given detail from available 
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references can still yield an estimate of the fatigue reliability so as to suggest detailed 

inspections of the detail once Ntarget stress cycles have been accumulated. 
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Figure 4.14: Fatigue Reliability of Gusset Plate-Transverse Stiffener Detail with an 
Initial Crack Size, a0, of 0.39 in. 
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Figure 4.15: Fatigue Reliability of Gusset Plate-Transverse Stiffener Detail with a 
Lognormal Initial Crack Size, a0, with a mean of 3.937×10-3 in. and a COV 
of 0.2. 
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4.4 SUMMARY 

Some key findings and conclusions from this chapter are summarized below: 

(1) The safety status of fracture-critical members (details) in steel bridges under fatigue 

loading can be represented by reliability analysis.  Fatigue reliability analysis 

provides a convenient way of quantifying the fatigue deterioration of fracture-critical 

members in steel bridges.  In contrast to deterministic procedures, fatigue reliability 

is directly related to the probability of fatigue failure.  This allows for more 

advanced applications such as risk management, optimal fatigue design, and optimal 

inspection scheduling for fracture-critical members during the service life of a 

bridge.  In Chapter 5, the application of fatigue reliability analysis to optimal 

inspection scheduling will be explored. 

(2) The fatigue reliability of a fracture-critical member can be assessed using AASHTO 

S-N curves or LEFM principles depending on the type of detail being studied.  For 

details classified as belonging to one of the standard AASHTO fatigue categories, a 

limit state function expressed in terms of the number of stress cycles till failure 

based on Miner’s rule is used to evaluate the fatigue reliability.  For details not 

classified according to AASHTO fatigue categories, a limit state function related to 

crack size and growth rate is used to evaluate fatigue reliability. 

(3) The variables needed for fatigue reliability analysis in either the AASHTO or the 

LEFM approaches have been studied and statistics on these variables have been 

compiled in this chapter to assist in performing reliability analyses. 

(4) Three main factors – the number of stress cycles, the stress range, and the 

type/category of the detail – directly influence the fatigue reliability of a detail over 

time.  In a direct way, an increase in the number of accumulated stress cycles leads 

to a lower fatigue reliability level (and a higher probability of fatigue failure).  For 
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any type of detail, higher stress range levels will lower the fatigue reliability faster 

than smaller amplitude cycles.  The more severe the fatigue category (e.g., 

AASHTO Category E is more severe than Category A), the lower the fatigue 

reliability will be for similar cyclic loads. 

(5) After obtaining the fatigue reliability index versus number of stress cycles (i.e., β 

versus N curves), a comparison of the fatigue reliability with a target reliability index 

can provide useful information for planning inspection schedules.  The number of 

stress cycles, Ntarget, that it takes for a detail to reach the selected minimum 

acceptable target reliability index (assumed to be 3.7 in the illustrations presented in 

this dissertation) can serve as a useful early warning point in time from which to 

consider more detailed inspections to avoid large cracks or fatigue failure. 

(6) It is important to note that though the fatigue reliability of a fracture-critical member 

might be higher than the target reliability (especially early on), this only means that 

the probability of fatigue failure is lower than the maximum acceptable level (i.e., PF 

is less than Φ(−βtarget)).  Routine inspections are still needed for such details to 

detect cracks caused by unexpected events, perhaps not related to cyclic loading. 

(7) In the LEFM fatigue reliability approach, a case study was presented to show how 

the initial crack size can affect evaluation of the fatigue reliability of a detail in a 

direct manner.  Without precise information of the initial crack size, an assumed 

initial crack size distribution based on available references (compiled in this chapter) 

can still yield an estimate of the fatigue reliability that can be used to determine a 

warning point associated with Ntarget accumulated cycles (see Item (5) above) after 

which, more detailed inspections of the detail might be considered. 

The analysis procedures involved in the AASHTO fatigue reliability approach and 

in the LEFM reliability approach are summarized in Figures 4.16 and 4.17, respectively. 
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Figure 4.16: Flow Chart for the AASHTO Fatigue Reliability Analysis Approach. 
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Figure 4.17: Flow Chart for the LEFM Fatigue Reliability Analysis Approach. 
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Chapter 5:  RELIABILITY-BASED FATIGUE INSPECTION 
SCHEDULING FOR STEEL BRIDGES 

 

5.1 INTRODUCTION 

Currently, the scheduling of inspections to prevent steel bridges from fatigue 

failure is based on both a two-year periodic pattern required by the Federal Highway 

Administration (FHWA) and the responsible engineer’s experience.  However, since 

every steel bridge has its own specific geometric shape, design, and traffic conditions, 

fatigue is hard to predict.  Furthermore, details may be classified into different 

categories and might experience quite different levels of stress ranges.  This can result 

in different fatigue lives for each detail.  Thus, a specific fixed inspection interval 

schedule may not meet the demands of all types of fatigue details in a steel bridge.  

Besides, a periodic inspection schedule leads to a fixed number of inspections over the 

service life of the bridge.  This number of inspections may be more than necessary for 

some fatigue details and less for others.  If the cost of an inspection is high, such as is 

the case for a fracture-critical inspection on a detail or member (which is usually 

expensive to perform) or if it causes traffic inconveniences, a fixed-interval periodic 

inspection schedule can place a burden on the transportation agency.  Clearly, the 

present strategy of inspection scheduling may be not only uneconomical but also 

inadequate from a safety point of view.  Therefore, this dissertation proposes a method 

of inspection scheduling for steel bridges based on reliability theory and optimization that 

seeks a balance of both economy and safety in the maintenance of steel bridges. 

Reliability-based inspection scheduling has been applied in many areas of 

engineering.  Thoft-Christensen and Sorensen (1987), Madsen et al. (1989) and 

Sorensen et al. (1991) applied such reliability-based inspection strategies to offshore 
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structures.  Frangopol et al. (1997) utilized such inspection strategies for reinforced 

concrete bridges.  For corrosion problems in steel girder bridges, Sommer et al. (1993) 

proposed a reliability-based strategy for inspection scheduling.  The general approach in 

all such applications is to formulate the inspection scheduling problem as an optimization 

problem that seeks to minimize a cost function (the objective function) by adjusting 

inspection times within appropriate constraints while simultaneously maintaining safety. 

The starting point for the reliability-based fatigue inspection scheduling procedure 

involves establishing the fatigue reliability curve (that describes the variation of the 

reliability index, β, versus number of accumulated stress cycles, N) obtained from a 

fatigue reliability analysis (as was discussed in Chapter 4).  Without any inspection or 

repair, this fatigue reliability curve will, in general, show a non-increasing trend of 

fatigue reliability with time in service for a detail.  This is an indication of the 

deterioration in safety level of the detail under fatigue loading.  Through inspections and 

possible repairs, the fatigue reliability of the detail can be raised to a higher level several 

times over the service life to prevent a decreasing reliability from falling below a 

specified target reliability level.  Performing too many inspections and/or repairs to keep 

the detail at a very high level reliability over its service life might not be an economical 

way of scheduling inspections.  As an example, consider three different inspection 

schedules (see Table 5.1) to be applied for a detail over its planned service life of 40 

years.  The three corresponding fatigue reliability curves associated with these three 

schedules might resemble those shown in Figure 5.1.  Each upward adjustment in 

reliability at certain points in these curves corresponds to an improvement in fatigue 

reliability due to a repair that followed an inspection.  Schedule I with four inspections 

every ten years is not a satisfactory inspection plan because four inspections are 

insufficient to prevent the fatigue reliability of the detail from falling below the target 
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reliability level.  For schedule II, the ten inspections are effective in keeping the fatigue 

reliability above the target reliability throughout the planned service life; however, the 

frequent inspections increase the costs and make this schedule uneconomical.  The 

objective of reliability-based inspection scheduling is to find an optimal schedule which 

will keep the fatigue reliability above the target reliability level over the service life.  It 

allows for non-periodic inspections as well in order to yield the most economical 

program.  Schedule III represents such an optimal schedule qualitatively for this 

illustrative example, which guarantees the lowest cost while not operating at unsafe 

levels.  Such a solution needs to be obtained by optimization procedures. 

Table 5.1: Three Inspection Schedules for an Example Detail. 

Schedule Number of Inspections Inspection Interval (yrs) 
I 4 10 
II 10 4 

III Optimal Number Optimum timing is determined. 
Intervals are non-uniform. 

 

 
Figure 5.1: Fatigue Reliability for Three Illustrative Inspection Schedules. 
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The analyses involved in the reliability-based inspection scheduling procedure are 

described in detail in the following sections.  The main features of the proposed 

procedure may be summarized as follows: 

(1) There is no need to define a priori the exact number of inspections and the exact 

inspection and repair times. 

(2) All possible inspection and repair scenarios are considered in an event tree analysis 

that will be presented in the following sections. 

(3) The occurrence probability of each inspection and repair scenario will be determined 

based on the likelihood of needing repair after each inspection.  The updated fatigue 

reliability following each repair is always higher than the target reliability. 

(4) The optimal solution for establishing required inspection times takes into 

consideration all possible repair scenarios and minimizes total cost, which includes 

costs of inspections and expected costs of repairs and failure. 

The event tree analysis that simulates all possible scenarios after inspection of a 

detail of interest is formulated based on an unknown number of inspections, an unknown 

set of inspection times, the fatigue reliability, and the likelihood of needed repairs during 

various points in time during the service life of the detail.  With the event tree analysis, 

the cost function for the detail, which is composed of the costs of inspections, repairs, and 

fatigue failure is examined as part of the optimization procedure.  The fatigue reliability 

and the likelihood of needed repairs may be determined with either the AASHTO 

approach or the LEFM approach depending on the type of the detail and then used in the 

event tree analysis and the search for the optimal schedule. 
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5.2 EVENT TREE ANALYSIS 

In order to represent all the possible scenarios that might need to be considered 

after prospective inspections and repairs, an event tree analysis is needed.  Some 

underlying assumptions that form the basis for the proposed procedure include the 

following: 

(1) that the fatigue reliability of a detail can be modeled as a non-increasing function of 

time, β(T), to express the rate of deterioration of the detail over its service life; 

(2) that repair is considered by estimating the likelihood, PR, that the detail will need 

repair (this quantity, PR, will in turn be established as the probability of detecting a 

crack whose size exceeds some prescribed size that warrants repair); 

(3) that all detected cracks larger than the prescribed crack size in (2) are repaired 

immediately following the inspection; 

(4) that there are only two actions possible following each inspection: “repair” or “no 

repair;” and 

(5) that after a repair, the reliability of the detail is returned to its original level (i.e., an 

“as good as new” repair is guaranteed). 

Based on the above five assumptions, an event tree analysis for a detail can be performed 

and will form part of the overall inspection scheduling procedure. 

After every inspection of a fatigue detail, possible actions of “repair” and “no 

repair” are enumerated to construct the event tree for this detail over the service life.  An 

example of an event tree, which is similar to one suggested by Frangopol et al. (1997), is 

shown in Figure 5.2.  From the year T0 when the detail is assumed to be put into service 

until the year T1
- when the first inspection is about to be performed, the detail is assumed 

not to have had any repair; so, a single horizontal branch can represent the status of the 

detail from T0 to T1
-.  The time spent during inspection is assumed to be negligibly short.  
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After the first inspection at T1
+, a repair decision has to be made according to the 

inspection results for the fatigue detail.  If a crack is detected and the crack size is over 

the size limit defined to be that needing repair, a repair action is assumed to be 

implemented immediately.  The time spent during repair is also assumed to be 

negligibly short in this study but this assumption can easily be relaxed.  If no crack is 

detected or the crack size can be tolerated (i.e., it is smaller than a size that warrants 

repair), no repair action should be taken.  Hence, the original single horizontal branch 

modeling the fatigue detail’s status at T1 is bifurcated into two branches; one branch 

models the detail status after repair from T1
+ to T2

- (the time just preceding the second 

inspection) and the other branch models the status without any repair from T1
+ to T2

-.  In 

Figure 5.2, a branch designated “1” represents a repair action and a branch designated “0” 

represents a no-repair action.  Both branches are bifurcated again at T2
+ just after the 

second inspection is completed to model the repair status of the detail.  Continuing 

onward, each branch in the event tree will be bifurcated again and again immediately 

after every inspection is completed until the service life, Tf, is reached.  Therefore, the 

event tree simulates all the possible repair realizations in all of the branches during the 

planned service life.  If n inspections are performed during the service life of a detail, 2n 

branches will be generated at the end of the event tree, implying that 2n possible scenarios 

could happen in the future.  Note that in the optimization problem to be formulated, we 

will be attempting to determine the number, n, of inspections and the times of these 

inspections, T1, T2, … Tn. 

The fatigue reliability, modeled as a decreasing function, β(T), obtained based on 

the AASHTO approach or the LEFM approach for the fracture-critical detail of interest  

will be greatly affected by the repair realizations after each inspection.  In this study, an 

assumption is made that the detail after repair will be as good as new.  Thus, the fatigue 
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reliability at every inspection time will be raised (or updated) to the same level as that at 

the starting point, T0, if a repair action is taken (i.e., on all “1” branches). Fatigue 

reliability patterns for all of the 2n branches are related to repair realizations for the detail.  

Figure 5.2 shows a schematic representation of the fatigue reliability patterns for every 

branch in a typical event tree when n equals 2.  Note that the “as good as new” 

assumption may be modified to conditions where either the detail is “not as good as new” 

or is “better than new” when sufficient data are available for the repair procedure and the 

altered reliability of the repaired detail.  Both the subsequent reliability curve following 

the repair and the associated costs might in general change for these assumptions relative 

to the “as good as new” case but such changes are easy to implement. 

 

 

Figure 5.2: Representative Event Tree showing Inspection and Repair Realizations. 
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5.3 LIKELIHOOD OF NEEDED REPAIR 

The decision of whether or not to repair as is made after every inspection can be 

interpreted in a probabilistic form.  The likelihood of needed repair, PR, will be 

employed to describe the decision made after every inspection.  This likelihood may be 

thought to be the same as the probability of detecting a crack that exceeds a prescribed 

crack size that warrants repair in the detail.  Due to differences in defining limit state 

functions for the AASHTO and the LEFM fatigue reliability approaches, the definitions 

for the likelihood of needed repair, PR, in these two fatigue reliability approaches are also 

different and are described in the following. 

 

5.3.1 AASHTO Approach 

Since the limit state function, g(X), employed for evaluating fatigue failure in the 

AASHTO approach is expressed in terms of the number of stress cycles, an associated 

limit state function, H(X), for evaluating the likelihood of needed repair in the AASHTO 

approach may also be defined as a function related to number of stress cycles.  Since the 

likelihood of needed repair is defined as the probability of detecting a crack size equal to 

or greater than a prescribed size, aR, in the detail that warrants repair, a relationship 

between the number of stress cycles and crack size needs to be developed.  Employing 

Equation 4.31, the number of stress cycles, NR, associated with this prescribed crack size, 

aR, can be expressed as: 
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or the number of years, YR, associated with aR can be equivalently expressed as: 
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The resistance term in the new repair-related limit state function, H(X), can thus 

be set as NR (or YR), i.e., the number of stress cycles (or years) it takes for a crack to grow 

to a size, aR; while the load term in H(X) can be defined as the number of stress cycles 

accumulated (or years passed).  Accordingly, the limit state function, H(X), required for 

evaluating the likelihood of needed repair for AASHTO-type details can be defined as: 

 ( ) NNH R −=X  (5.3) 

or, equivalently, 

 ( ) YYH R −=X  (5.4) 

The likelihood of needed repair for the detail in question can then be related to an 

index, γ, as follows: 

 ( )( ) ( )γ−Φ=≤= 0XHPPR  (5.5) 

As can be seen in Equation 5.1, the geometry function, Y(a), for the assumed 

crack type in the AASHTO-type detail and the equivalent initial flaw size (EIFS) defined 

in Chapter 4 for the uncracked detail are needed in order to evaluate the likelihood of 

needed repair.  To facilitate practical implementation of the proposed procedure for 

inspection scheduling, the likelihood of needed repair in the AASHTO approach may be 

alternatively considered to be the same as the probability of first observation of a crack in 

the detail, which implies that a crack will be repaired as soon as it is first observed.  

With this definition, the resistance term in H(X) can be rewritten as the number of stress 

cycles until first observation of a crack.  According to Fisher et al. (1970), this number 

of stress cycles until first observation of a crack was usually more than 75 percent of the 

number of cycles corresponding to the life of the AASHTO-type details they tested.  

Conservatively, then, the limit state function, H(X), associated with the likelihood of 

needed repair can be represented as: 
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where N is the number of stress cycles to which the detail is subjected, and Nc is the 

critical number of stress cycles leading to fatigue failure for the detail.  Since the 

random variables, A and ∆, have already been discussed in Chapter 4, the likelihood of 

needed repair can be easily evaluated based on Equation 5.5. 

 

5.3.2 LEFM Approach 

For the LEFM approach, the limit state function, H(X), for evaluating the 

likelihood of needed repair for all non-AASHTO type details can be defined in terms of 

crack size in order to be consistent with the definition of the limit state function, g(X), 

used for evaluating the probability of fatigue failure (Equation 4.33).  The likelihood of 

needed repair may be regarded as the same as the probability of detecting a crack with a 

prescribed size, aR, which may be considered as the maximum permissible size before 

repair is warranted.  Replacing ψ(a0,ac) in Equation 4.33 by ψ(a0,aR), the associated 

limit state function, H(X), needed to evaluate PR as proposed by Madsen (1989) is written 

as: 

 ( ) ( )NR aa,aaH ,ψψ)( 00 −=X  (5.7) 

or 
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With this limit state function, H(X), defined for the LEFM approach, need for repair after 

an inspection corresponds to the event, H(X)≤ 0.  Hence, the likelihood of needed 

repair, PR, for any non-AASHTO details can be evaluated using Equation 5.7 or 5.8.  

The index γ (see Equation 5.5 a well) associated with the likelihood of needed repair, PR, 

can be evaluated as follows: 
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 ( )RP−Φ= − 11γ  (5.9) 

 

5.3.3 Repair Realizations in the Event Tree 

Considering the event tree branches as shown in Figure 5.2, it can be seen that the 

likelihood of needed repair at every inspection, i.e., PR(Ti), depends on the elapsed time 

since the last repair.  It is assumed that the likelihood of needed repair at the various 

inspection times are statistically independent, i.e., PR(Ti) and PR(Tj) are statistically 

independent for i ≠ j.  The probability, P(Bi), of any branch, Bi, that includes NR repairs 

can be expressed as the product of NR likelihood of needed repair terms and (N-NR) 

complementary terms where repair is not needed. 

 

 

5.4 COST FUNCTION 

The various inspection and repair scenarios associated with any inspection 

schedule employed for a detail may be studied in an event tree analysis.  As described in 

Section 5.2, such an event tree analysis can provide not only the probability of occurrence 

of each branch, but also the fatigue reliability associated with each branch for the 

inspection schedule considered.  Hence, with the help of such an event tree approach, 

we can now define the cost of inspections, the cost of repairs, and the cost associated with 

failure of a specified detail.  These costs can then be employed in the total cost function 

(objective function) for the optimization problem. 
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5.4.1 Cost of Inspections 

For steel bridge details, nondestructive inspection methods might include visual 

inspection, ultrasonic inspection, radiographic inspection, magnetic particle inspection, 

dye penetrant inspection, acoustic emission inspection, etc.  We consider cases where 

only one inspection technique is employed over the service life of a detail.  In Chapter 6, 

selection between alternative inspection techniques is discussed. 

Let KI represent the cost of a single inspection of the specified detail.  Then, the 

total cost of inspections over the service life, CI, can be represented as: 

 I
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where n represents the number of inspections. 

 

5.4.2 Cost of Repairs 

Let KR represent the cost of a single repair of the specified detail.  Because of the 

different repair realizations of the detail as shown in the event tree (see Figure 5.2), the 

cost of repair at the time Ti is the product of KR and E[Ri], the expected number of repairs 

at Ti.  Let Ri denote a repair event at time, Ti, and Bj
i denote branch j of the event tree at 

time, Ti.  The expected number of repairs at Ti can be expressed as: 
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The total cost of repairs for the detail over the service life, CR, with n inspections can be 

represented as: 
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5.4.3 Cost of Failure 

The cost of failure, CF, is meant to represent the expected cost resulting from 

consequences of a failure.  If the detail/member under consideration is fracture-critical, 

its failure could cause failure of the span where the detail is located or even failure of the 

entire steel bridge.  Hence, the cost of failure should include the possible cost of 

rebuilding a span or the entire bridge, as appropriate, as well as costs due to lost use, 

injuries, fatalities, etc. – not all of which are easily and uncontroversially estimated.  

Nevertheless, all of these potential costs associated with a failure are summed to yield a 

quantity, KF.  The probability of failure on each of the branches in the event tree should 

be considered in the evaluation of the expected cost of failure.  Let F denote the event 

that the detail in question fails and Bi denote branch i of the event tree.  Then, the 

expected cost of failure for the specified detail over the service life may be defined as: 
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Considering all the possible scenarios (branches) of the event tree for the detail, an 

expected tree reliability index E[β] can be represented as: 
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Substituting Equation (5.14) into Equation (5.13), the cost of failure may finally be 

expressed as: 
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5.4.4 Total Cost 

With definitions of the cost of inspections, repairs, and failure for the specified 

detail, the total cost, CT, may be represented as: 

 FRIT CCCC ++=  (5.16) 
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where Equations 5.10, 5.12, and 5.15 have been used. 

 

5.5 CONSTRAINTS 

The number of inspections, n, and the inspection times, T1 … Tn, are variables for 

this optimization problem.  One obvious constraint on the inspection times may be 

expressed as: 
 fn TTTT <<<< K10  (5.18) 

Usually, restrictions are placed on the time between inspections such that the inspection 

interval is neither too large (requiring an upper bound, Tmax, on time between inspections) 

nor too short (requiring a lower bound, Tmin).  Such constraints on the inspection interval 

may be required by local and state transportation agencies.  Hence, a second constraint 

on inspection times for the optimization problem is: 

 max1min TTTT ii ≤−≤ − , i = 1, 2, … n (5.19) 

It is also usually necessary to keep the reliability (safety) for the selected detail 

above a specified level.  This requirement can be achieved by defining a target 

reliability index, βmin, which is the minimum acceptable safety level for the specified 

detail.  Thus, an additional constraint to be included in our optimization problem may be 

defined as: 

 ( )[ ] minββ ≥iTE , i = 1, 2, … (n+1)  where Tn+1 = Tf. (5.20) 
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5.6 FORMULATION OF THE OPTIMIZATION PROBLEM 

In summary, the optimization problem for inspection scheduling may be 

formulated as follows: 
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subject to fn TTTT <<<< K10  

 max1min TTTT ii ≤−≤ − ,   i = 1, 2, … n 

 ( )[ ] minββ ≥iTE ,   i = 1, 2, … (n+1) 

Minimizing the total cost, a set of inspection times, Ti, may be found.  By changing the 

number of inspections, n, the total cost corresponding to a different number of 

inspections may be compared so as to finally yield the optimization solution. 

As described, the fatigue inspection scheduling problem becomes a mathematical 

optimization problem with reliability and inspection interval constraints that involves a 

search for a feasible set of optimization variables (n; T1, T2,…Tn) that yields the minimum 

total cost and an acceptable fatigue reliability for a detail over its service life.  In theory, 

this optimization problem for inspection scheduling is a nonlinear optimization problem 

with constraints.  Nonlinear optimization solvers such as NLPQL by Schittkowski 

(1985), GRG2 by Lasdon et al. (1978), SQP by Fan et al. (1988), DONLP2 by Spellucci 

(1998), and many others may be employed to solve this optimization problem.  A 

FORTRAN program was developed to assist in solving the optimization problem of 

fatigue inspection scheduling in this study.  The IMSL library routine, NCONF (Visual 

Numerics (1997)), was used to solve the general nonlinear programming problem using 

sequential quadratic programming and a finite-difference gradient.  The routine, 

NCONF, is based on the subroutine, NLPQL, a FORTRAN code developed by 

Schittkowski (1985). 
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5.7 NUMERICAL EXAMPLES 

Two examples are presented here to illustrate application of the reliability-based 

optimal inspection scheduling procedure.  The first example focuses on an AASHTO 

type detail in a plate girder bridge while the second example examines a non-AASHTO 

type detail in a box girder bridge.  Both of these details are assumed to be located on 

fracture-critical members; hence, fatigue failure of the detail is expected to trigger 

collapse of the bridge span and result in considerable loss.  The influence of relative 

costs of inspection, repair, and failure and the effect of variation in the models for daily 

truck traffic are discussed in these example studies. 

 

5.7.1 Plate Girder Bridge Example 

The example bridge studied here is the 680-ft long Brazos River Bridge in Texas, 

which was built in 1972.  Figure 5.3 shows the layout of the bridge as well as a 

magnified view of the selected fatigue detail, which is classified as a Category E detail 

according to the AASHTO Specifications.  This detail located in the leftmost 150-ft 

span is analyzed.  A Rayleigh distribution is assumed for the stress ranges with 

distribution parameter, SR0, equal to 6.13 ksi.  This corresponds to an equivalent stress 

range, SRE, of 9.53 ksi based on Equation 3.12, assuming a fatigue exponent, m, equal to 

3.  The target reliability βmin for the detail is assumed to be 3.7, corresponding to a 

failure probability of approximately 1/10000.  Two sets of relative costs of inspection, 

repair, and failure: (i) KI : KR : KF = 1 : 1.3×102 : 4×105; and (ii) KI : KR : KF = 1 : 

2.6×102 : 4×105 are considered for illustration of the optimal inspection scheduling.  The 

number of stress cycles per truck passage Cs and the Average Daily Truck Traffic ADTT 

are taken to be 1 and 84, respectively. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.3: Brazos River Bridge showing (a) entire bridge in elevation; (b) a typical 
transverse section; and (c) a detail of interest for fatigue reliability. 
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After applying the AASHTO fatigue analysis approach, the fatigue reliability, β, 

of the specified detail over the service life is shown in Figure 5.4.  The target reliability 

level, βmin, of 3.7 is also shown in the figure.  It can be seen that the fatigue reliability of 

the chosen detail is below the target reliability by the thirteenth year. 

 

 

Figure 5.4: Fatigue Reliability of the chosen Category E Detail over 50 years. 

First, we will assume that in the year 2002 (i.e., 30 years after 1972), no crack 

was found or that the crack in the detail was repaired to its original condition.  To avoid 

too many inspections and to simultaneously meet the 2-year inspection interval required 

by the Federal Highway Administration (FHWA), the constraints on inspection intervals, 

Tmin and Tmax, are taken to be 0.5 and 2 years, respectively.  Applying the optimization 

method proposed with an “as good as new” repair policy, and for the relative costs of KI : 

KR : KF = 1 : 1.3×102 : 4×105, it is found in Fig. 5.5 that the optimal number of 
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inspections for the next twenty years is eleven and the associated optimal inspection 

schedule is as shown in Fig. 5.6 where, for comparison, an ad hoc periodic inspection 

schedule is also shown.  Note that each discrete upward change in the reliability curve 

takes place at the time of an inspection and reflects the effect of a repair in raising the 

fatigue reliability. 

The optimal inspection times in years are T = (2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 13.5, 

14.0, 14.5, 15.0, 15.5) + 30.  On comparing the optimal inspection schedule with the 

periodic two-year interval schedule, the total cost (162.7) of the optimal schedule is 

found to be less than the total cost (168.9) of the periodic schedule.  Though the optimal 

schedule requires two more inspections than the periodic schedule, these additional 

inspections and the short interval between inspections after the bridge reaches 42 years of 

age reduce the risk of the detail’s failure.  This fact can be confirmed by the reduced 

cost associated with failure (in the total cost for the optimal schedule).  Therefore, the 

optimal schedule clearly represents the preferred choice for inspecting this detail over its 

planned service life. 

Upon releasing the upper-bound constraint on the inspection interval, i.e., when 

Tmax is unbounded, it is found as shown in Fig. 5.7 that only five inspections are required 

to achieve the optimal schedule with an associated total cost of 157.6, which is less than 

the total cost (162.7) of the previous optimal schedule where Tmax was equal to 2 years.  

The inspection times in years are T = (13.2, 14.1, 14.6, 15.1, 15.6) + 30.  Note that the 

reliability index, β, is equal to exactly 3.7 at T1 (43.2 yrs) and Tf (50 yrs).  No 

inspections are needed before the reliability curve first hits the target reliability level at 

43.2 yrs.  Also, no inspections are needed after the bridge has completed 45.6 yrs of its 

planned life.  Because of this, the total cost is lower than for the case where the 

constraint on Tmax is included. 
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Figure 5.5: Optimal total cost as a function of the number of inspections for the chosen 
detail (KI : KR : KF =1 : 1.3×102 : 4×105). 
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Figure 5.6: Optimal inspection schedule (Tmin = 0.5 yrs, Tmax = 2 yrs) for the repair cost 
case of KI : KR : KF =1 : 1.3×102 : 4×105, CT = 162.7. 
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Figure 5.7: Optimal inspection schedule (Tmax unbounded) for the repair cost case of KI : 
KR : KF =1 : 1.3×102 : 4×105, CT = 157.6. 

For the second case with relative costs of KI : KR : KF = 1 : 2.6×102 : 4×105 and 

with inspection interval constraints of Tmin = 0.5 years and Tmax = 2 years, nine inspection 

times over the next twenty years are needed.  The optimal inspection times in years are 

T = (1.7, 3.4, 5.4, 7.4, 9.4, 11.4, 13.4, 15.1, 17.1) + 30 as shown in Fig. 5.8 where again a 

two-year periodic inspection interval schedule is also shown.  Though the number of 

inspections (nine) is the same as with the periodic schedule, the total cost (200.5) for the 

optimal schedule is still lower than the total cost (211.7) for the periodic schedule.  

After removing the upper-bound constraint (Tmax = 2 years) again, it is found in Fig. 5.9 

that fewer (four) inspection times, T = (10.8, 13.5, 15.1, 17.1) + 30, are needed to reach 

the optimal schedule with a total cost of 195.0, which, again, is lower than the total cost 

(200.5) for the optimal schedule with Tmax = 2 yrs. 
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From the results presented, it can be seen that the increase in the number of 

inspections, n, increases inspection and repair costs but typically decreases failure cost.  

The optimal result (or lowest cost) occurs at the number, nopt, where the decrease in 

failure costs starts to become less than the increase in inspection and repair costs.  From 

the two cases presented, it can be seen that removing the upper-bound constraint (Tmax) 

on inspection intervals leads to lower costs.  Also, it found that when repair costs are 

larger, the optimal schedule generally involves fewer inspections.  Clearly, the 

constraints on inspection intervals and the relative costs of inspection, repair, and failure 

affect the resulting optimal schedule for inspections in a very direct manner.  
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Figure 5.8: Optimal inspection schedule (Tmin = 0.5 yrs, Tmax = 2 yrs) for the repair cost 
case of KI : KR : KF = 1 : 2.6×102 : 4×105, CT = 200.5. 



 125

0

1

2

3

4

5

6

30 32 34 36 38 40 42 44 46 48 50

Service Life (Years)

Fa
tig

ue
 R

el
ia

bi
lit

y 
β

Optimal Schedule, Tmax Unbounded, n = 4
Optimal Schedule, Tmax = 2yr, n = 9

 

Figure 5.9: Optimal Inspection Schedule (Tmax unbounded) for the repair cost case of 
KI : KR : KF = 1 : 2.6×102 : 4×105, CT = 195.0. 
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5.7.2 Box Girder Bridge Example 

A newly built bridge as shown in Figure 5.10 is considered.  The bottom 

(tension) flange, with a width of 42 inches, is known to have a center-notched crack in 

the two full-penetration butt welds that run the entire width of the bottom flange.  This 

example bridge is adapted from one described by Zhao et al. (1994) for which we seek an 

optimal inspection schedule for the next twenty years.  For the traffic loading, the 

variables, Cs and ADTT are taken to be 1 and 300, respectively, in Equation 5.8.  A 

Rayleigh distribution is assumed for the stress ranges with distribution parameter, SR0, 

equal to 6.334 ksi.  This corresponds to an equivalent stress range, SRE, of 9.85 ksi 

assuming a fatigue exponent, m, equal to 3.  The minimum (target) reliability index, 

βmin, is taken to be 3.7.  Random variables related to the crack and its growth are listed 

in Table 5.2 and the geometry function for this crack geometry may be expressed 

according to Paris (1964) as: 

 ( ) ( ) ( )
( )ba

bababaaF
−

−+−
=

1
044.0370.05.01)(

32

 (5.22) 

where 2a is the crack size and 2b is the width of the bottom flange plate. 
 

 

Figure 5.10: Center-Notched Crack in the Box Girder Bridge Example. 
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Table 5.2: Related Random Variables for Center Crack in Bottom Flange. 

Variable Type Mean COV 

a0 (initial crack size, in.) lognormal 0.020 (in.) 0.500 

ac (critical crack size, in.) constant 2.000 (in.) 0.000 

aR (crack size for repair, in.) constant 0.200 (in.) 0.000 

C (fatigue growth parameter)* lognormal 2.05×10-10 0.630 

m (fatigue growth exponent) normal 3.000 0.100 

*C is assumed to have units consistent with crack size in inches and ∆K in ksi-in½ 
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Figure 5.11: Fatigue Reliability of the Detail with Center-Notched Crack over 80 years. 
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Effects of Relative Repair and Failure Costs 

Three cases of relative costs of inspection, repair and failure: (i) KI : KR : KF = 1 : 

1×101 : 1×105; (ii) KI : KR : KF = 1 : 2×101 : 1×105; and (iii) KI : KR : KF = 1 : 1×101 : 

2×105 are considered here to focus on the relative effects of repair cost and failure cost on 

proposed optimal inspection scheduling plans.  Since the detail shown in Figure 5.10 is 

not specifically defined in the AASHTO fatigue categories, the LEFM-based procedure 

described for non-AASHTO type details in Chapter 4 is applied and a fatigue reliability 

curve from a FORM (First-Order Reliability Method) computation leads to the time-

dependent reliability curve shown in Figure 5.11.  It can be seen that, without 

intervention or repair of some sort, the fatigue reliability of the chosen detail would fall 

below the target reliability of 3.7 after 12.5 years.  Hence, an inspection schedule is 

needed for the detail in order to prevent failure due to fatigue.  For each of the three 

cases, two optimal schedules are provided.  One is the optimal schedule subject to the 

constraints, Tmin = 0.5 years and Tmax = 2 years, on inspection intervals to prevent overly 

frequent inspections and while still meeting the two-year inspection interval requirement 

by the FHWA.  The other optimal schedule only requires the lower-bound constraint on 

Tmin but leaves Tmax unbounded. 

For Case (i) using the relative costs of KI : KR : KF = 1 : 1×101 : 1×105, reliability 

curves for the two optimal schedules with the different inspection interval constraints are 

shown in Figure 5.12.  Again note, as in the plate girder example, that each discrete 

upward change in the reliability curve takes place at the time of an inspection and reflects 

the effect of a repair in raising the fatigue reliability.  It may be seen that for the optimal 

schedule constrained by Tmax = 2 years, the optimal number of inspections is seven with a 

total cost of 35.7 and the inspection times in years, T = (1.3, 3.3, 5.3, 7.3, 9.3, 11.3, 11.8).  

Not unexpectedly, the optimal schedule without a Tmax constraint requires fewer (three) 
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inspections and costs less (19.3); the associated inspection times in years, T = (10.0, 10.5, 

11.0).  Both optimal schedules result in lower costs than the total cost (47.2) for a two-

year periodic inspection schedule that is required by the FHWA.  Though the optimal 

schedule with Tmax = 2 years demands two fewer inspections than the periodic schedule, 

the optimal schedule still can maintain the fatigue reliability of the detail above the target 

reliability over the twenty years and also keep the costs lower than is the case with the 

periodic schedule.  The two fewer inspections essentially reduce the inspection costs 

and possible repair costs in the future.  For the optimal schedule with Tmax unbounded, 

the reliability index, β, is approximately equal to 4.0 at T1 (10.0 yrs) and Tf (20 yrs).  No 

inspections are needed before the reliability curve first drops to a level of 4.0 at 10.0 

years.  The schedule with unbounded Tmax costs less (19.3) than that with Tmax = 2 years, 

where the costs were 35.7. 
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Figure 5.12: Optimal Inspection Schedules with Tmax = 2yrs (CT = 35.7) and with 

unbounded Tmax (CT = 19.3) for Case (i): KI : KR : KF = 1 : 1×101 : 1×105. 
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For Case (ii) with higher repair costs than Case (i) (now, KI : KR : KF = 1 : 2×101 : 

1×105), Figure 5.13 shows the two optimal inspection schedules.  For the optimal 

schedule with Tmax = 2 years, six inspections over the next twenty years are needed and 

the optimal inspection times in years are T = (2.0, 4.0, 6.0, 8.0, 10.0, 10.6).  Because the 

number of inspections (six) is smaller than that with the two-year periodic schedule, the 

total cost (59.0) for this optimal schedule is lower than the total cost (85.2) with the 

periodic schedule.  After removing the constraint on Tmax, it is found that even fewer 

inspections (two) with T = (10.2, 10.7), are needed to yield the optimal schedule with a 

total cost of 29.1, which is again lower than the total cost of 59.0 for the optimal schedule 

that has the constraint, Tmax = 2 years. 
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Figure 5.13: Optimal Inspection Schedules with Tmax = 2yrs (CT = 59.0) and with 
unbounded Tmax (CT = 29.1) for Case (ii): KI : KR : KF = 1 : 2×101 : 1×105. 
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Comparing Cases (i) and (ii), it can be seen that the two optimal schedules in Case 

(ii) with the higher relative repair costs demand fewer inspections than the two 

corresponding schedules in Case (i).  The increase in relative repair costs tends to 

decrease the number of inspections to arrive at the optimal schedule.  This effect can be 

verified by comparing Figures 5.14 and 5.15, where the costs of various optimized 

inspection schedules in the two cases are presented.  Note that at each abscissa value, n 

or Number of inspections, the costs shown are associated with the optimal schedule for 

that number, n.  The overall optimal schedule that should be selected is that associated 

with the lowest cost after considering all possible values of n.  It can be seen that the 

inspection and failure cost curves for both cases stay at roughly the same levels.  

However, the repair cost curve in Case (ii) with the higher relative repair costs, is 

approximately twice as high as the repair cost curve in Case (i).  The total cost curve is 

controlled by the repair cost curve in Case (ii).  The fewer the number of inspections, 

the lower the repair costs and total costs.  However, fewer inspections increase the risk 

of failure and therefore raise the expected failure costs.  Upon combining the effects of 

repair and failure costs with the number of inspections, the higher relative repair cost case  

(Case (ii)) yields an optimal schedule with relatively fewer inspections.  Though Figures 

5.14 and 5.15 only show optimal schedules with the constraint of Tmax = 2 years, the same 

effect of higher relative repair cost is found in the case where the constraint on Tmax is 

removed.  It should be noted that the failure cost curves in Figures 5.14 and 5.15 are at 

similar cost levels but are not exactly the same.  This is because the same number of 

inspections in the two cases results in different optimized schedules over the planned 

period. 
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Figure 5.14: Costs of Various Optimized Inspection Schedules with Tmax = 2yrs 
for Case (i): KI : KR : KF = 1 : 1×101 : 1×105. 
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Figure 5.15: Costs of Various Optimized Inspection Schedules with Tmax = 2yrs  
for Case (ii): KI : KR : KF = 1 : 2×101 : 1×105. 
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For Case (iii) with the higher relative failure costs (KI : KR : KF = 1 : 1×101 : 

2×105) compared to Case (i), the reliability curves for two inspection schedules with the 

different constraints are shown in Figure 5.16.  The optimal schedule with no constraint 

on Tmax requires fewer inspections (four) in twenty years and costs less (26.4) than the 

optimal schedule with Tmax = 2 years for which the number of inspections required is 

eight and cost, 38.7.  The inspection times in years for the cases with Tmax = 2 years and 

with Tmax unbounded are, respectively, T = (1.5, 3.5, 5.5, 7.5, 9.5, 11.5, 12.0, 12.5) and T 

= (0.5, 10.0, 10.5, 11.0).  Both optimal schedules result in lower costs than the total cost 

(47.5) for the two-year periodic inspection schedule required by the FHWA. 
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Figure 5.16: Optimal Inspection Schedules with Tmax = 2yrs (CT = 38.7) and with 
unbounded Tmax (CT =26.4) for Case (iii): KI : KR : KF = 1 : 1×101 : 2×105. 
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Comparing Cases (i) and (iii), it is found that the optimal schedules in Case (iii) 

(with higher failure cost case) requires more inspections than the optimal schedule in 

Case (i).  With the Tmax constraint set at 2 years, the higher failure cost case needs eight 

inspections while the lower failure cost case needs seven for lowest total cost.  When 

Tmax is unbounded, Case (i) requires three inspections while Case (iii) requires four.  It is 

clear that an increase in relative failure costs, KF, leads to an increase in the number of 

inspections in the optimal schedule.  By studying Figures 5.17 and 5.18, it can be seen 

that for the optimal schedules with no Tmax constraint, the increase in the relative failure 

cost (Case (iii)) essentially raises the failure cost curve about twice as high as the failure 

cost curve for Case (i) in Figure 5.17.  The influence of different failure costs that is 

apparent in the increment in total cost can best be seen in the schedules with a small 

number of inspections.  Repair and inspection cost curves are almost the same in both 

cases presented in Figures 5.17 and 5.18.  In summary, higher relative failure cost raises 

the total cost curve more in schedules that involve fewer inspections.  This is the reason 

why the Case (iii) schedule is associated with a larger number of inspections than Case 

(i).  In the context of actual applications, this result is consistent with the fact that more 

critical details whose failures have greater consequences usually require more inspections 

to ensure adequate structural safety. 
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Figure 5.17: Costs of Various Optimized Inspection Schedules with Tmax unbounded for 
Case (i): KI : KR : KF = 1 : 1×101 : 1×105. 
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Figure 5.18: Costs of Various Optimized Inspection Schedules with Tmax unbounded for 
Case (iii): KI : KR : KF = 1 : 1×101 : 2×105. 
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Effect of Average Daily Truck Traffic (ADTT) Models  

Thus far, for convenience, all the analyses have been based on models with 

constant ADTT values (e.g., ADTT fixed at 300 in the cases studied).  In reality, the 

ADTT value each year is not the same and should be treated as a random variable in the 

analysis.  Moses et al. (1987) suggested using a lognormal distribution to model the 

random variable, ADTT.  Hence, for the box girder example, lognormal ADTT models 

with a mean value of 300 and with COV values ranging from 0.1 to 0.4 are applied in 

order to assess the influence of ADTT uncertainty on fatigue reliability and on optimal 

inspection scheduling for the detail.  Figure 5.19 shows variations in the fatigue 

reliability for the center crack detail with the different ADTT models.  It can be seen 

that the fatigue reliability of the detail is lower for models with greater variability in 

ADTT.  For the ADTT model with a COV of 0.4, the fatigue reliability falls below the 

target reliability by the ninth year, while with the constant ADTT model, it takes 12.5 

years for this to occur. 
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Figure 5.19: Fatigue Reliability for Various ADTT Models. 
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Figure 5.20: Optimal Schedules with Constant and Lognormal ADTT Models. 

With a lognormal ADTT model (mean=300, COV=0.3), the optimization 

calculations are performed for Case (i) (KI : KR : KF = 1 : 1×101 : 1×105) to determine the 

influence of ADTT uncertainty on optimal inspection schedules.  With the Tmax = 2 

years constraint, the optimal schedule requires eight inspections with inspection times, T 

= (2.0, 4.0, 6.0, 10.0, 12.0, 13.4, 13.9) and the total cost is 40.1.  This optimal schedule 

demands one more inspection and costs more than the optimal inspection with the 

constant ADTT model (n = 7 and CT = 35.7).  Figure 5.20 shows a comparison of the 

schedules in these two cases.  Due to ADTT uncertainty, the fatigue reliability with the 

lognormal ADTT model is lower than the fatigue reliability with constant ADTT.  As a 

result, the constant ADTT model does not require any inspections after about 11.5 years, 

while the lognormal ADTT model requires inspections up to almost 14 years in order to 

keep the reliability above the target reliability level.  This trend which suggests that an 

increase of ADTT uncertainty will require more inspections in an optimal schedule can 
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also be explained by comparing Figure 5.21 with Figure 5.14.  Introducing uncertainty 

in ADTT leads to lower fatigue reliability of the detail, which in turn increases the risk of 

fatigue failure and associated failure costs.  It can be seen that the failure cost curve in 

Figure 5.21 is significantly higher than the failure cost curve in Figure 5.14, especially 

for those schedules that involve a small number of inspections.  Repair and inspection 

cost curves for the two cases are not very different.  In summary, with the lognormal 

ADTT model, the combined effect of the failure, repair, and inspection costs results in an 

optimal schedule with a relatively larger number of inspections than with the constant 

ADTT model.  Similar results can be found when the Tmax constraint is removed.  The 

optimal schedule with the lognormal ADTT model for unbounded Tmax requires six 

inspections with inspection times, T = (7.1, 7.6, 8.1, 13.6, 14.1, 14.6) and a total cost of 

30.3.  This optimal schedule again requires more inspections and costs more than the 

optimal schedule for the corresponding case with unbounded Tmax and a constant ADTT 

model. 
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Figure 5.21: Costs of Various Optimized Inspection Schedules with Tmax = 2yrs 
with a Lognormal ADTT Model (mean=300 and COV=0.3). 
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Figure 5.22: Normalized Costs for the Optimal Schedules with Various Lognormal 
ADTT Models. 

 

Figure 5.22 shows normalized costs (indicated here as the ratio of cost with the 

lognormal ADTT model to that with constant ADTT) as a function of the COV assumed 

for ADTT.  The number of required inspections is also indicated on the figure.  It is 

seen that total costs increase with increase in the ADTT COV (or, equivalently, with 

increase in ADTT uncertainty.  For low COV values up to about 0.3, the cost increases 

are small and at most one additional inspection is necessary when ADTT uncertainty is 

included, implying that ADTT uncertainty affects the overall scheduling problem to a 

limited extent.  However, as ADTT uncertainty grows beyond 0.3, the cost and number 

of inspections required increase dramatically.  As discussed earlier, greater uncertainty 

in ADTT implies lower fatigue reliability; the added inspections in the optimal schedules 

are needed to raise the fatigue reliability above the target reliability.  Relating all of this 

to practical applications, the results summarized in Figure 5.22 suggest that greater 
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variability in the average daily truck traffic (ADTT) demands more inspections of bridge 

details to prevent failure due to fatigue.  If the annual daily truck traffic does not 

fluctuate much, such as for saturated traffic condition in cities, the constant ADTT model 

can be adequate for use in optimal inspection scheduling.  Moses et al. (1987) suggested 

a COV value of 0.1 for use with the lognormal ADTT model.  As can be seen in Figure 

5.22, the optimal schedule and total cost are not significantly affected by ADTT 

uncertainty associated with such a relatively low COV value. 

 

Effect of Constraint on Target Reliability, βtarget 

Depending on the criticality of the detail and seriousness of failure consequences, 

the target reliability might sometimes need to be maintained at various specified high or 

low levels.  Thus far, all the analyses for the box-girder example have been based on a 

target reliability, βtarget, of 3.7, which corresponds to a probability of failure of 10-4.  The 

effect of raising the βtarget value to 4.2 (i.e., PF = 10-5) for Case (i) with KI : KR : KF = 1 : 

1×102 : 1×105 is examined now in order to assess the influence of different target 

reliability constraints on optimization solutions.  Upon analysis with the Tmax = 2 years 

constraint, it is found that the optimal schedule with the βtarget = 4.2 constraint requires 

seven inspections with a total cost of 35.7 and inspection times in years, T = (1.3, 3.3, 

5.3, 7.3, 9.3, 11.3, 11.8), which is the same as the optimal schedule with the βtarget = 3.7 

constraint.  The reason the optimal schedule is unchanged is because the set of fatigue 

reliability index values, β = (7.1, 5.8, 5.8, 5.9, 5.8, 5.8, 7.1, 4.2), at the seven inspection 

times and at the end of the 20th service year meet even the higher reliability level of 4.2 as 

can be seen in Figure 5.12.  Reliability constraints do not control the optimization 

solution; the inspection interval constraints do.  The higher target reliability constraint 

of 4.2 eliminates a few infeasible schedules in the optimization process but results in the 
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same solution for lowest cost as that with the lower reliability constraint (of 3.7) as 

shown in Figure 5.23.  It can seen that schedules with fewer than seven inspections are 

infeasible for a target reliability of 4.2 because there are not a sufficient number of 

inspections to maintain the fatigue reliability as high as 4.2 over 20 years.  The lowest 

cost for βtarget = 4.2 is associated with a feasible schedule and matches the solution for 

βtarget = 3.7.  Because the inspection interval constraints control the problem, the 

schedule for the lower reliability target leads to a safer than necessary schedule for that 

target reliability and even assures that higher target reliability levels can be met.  Only 

when the desired target reliability rises to much higher levels will the optimal schedule 

shift to one requiring more inspections than that for a lower target reliability level.  This 

is consistent with our expectation that more frequent inspections would be required to 

ensure a higher safety level for details. 

 
*marker "x": infeasible schedule when employing β target = 4.2
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Figure 5.23: Optimal Total Cost as a Function of the Number of Inspections for the Butt- 
Welded Detail when βtarget = 3.7 or 4.2 for Case (i): KI : KR : KF =1 : 1×101 : 
1×105. 
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Considering Case (i) again but with an unbounded Tmax and βtarget = 4.2, Figure 

5.24 shows that the optimal schedule for this problem requires three inspections with 

inspection times, T = (9.2, 9.7, 12.5) at a total cost of 22.3.  Except for the number of 

inspections, this schedule is different from the optimal schedule under the βtarget = 3.7 

constraint.  It can be seen that the fatigue reliability of the detail over 20 years is above 

4.2 and the total cost (22.3) of this schedule is higher than the total cost (19.3) for the 

optimal schedule with the lower target reliability constraint.  Releasing the Tmax 

constraint permits an optimal schedule with three inspections (i.e., n=3) which was not 

possible with the Tmax = 2 years constraint.  Note that if the target reliability is raised to 

a level that is too high, the optimal schedule might not be one for which n = 3 but will 

require more inspections, as expected. 
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Figure 5.24: Optimal Inspection Schedules with βtarget = 4.2 (CT = 22.3) and with βtarget = 
3.7 (CT = 19.3) for Case (i): KI : KR : KF = 1 : 1×101 : 1×105. 
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5.8 CONCLUDING REMARKS 

The key conclusions from this chapter may be summarized as follows: 

(1) Employing fatigue reliability analysis approaches presented in Chapter 4 along with 

means for determining the likelihood of needed repair, the use of event trees, and 

cost computations, the problem of fatigue inspection scheduling in bridge details can 

be modeled as a mathematical optimization problem.  Through the proposed 

reliability-based inspection scheduling procedure, an optimal inspection schedule 

providing the number and times of planned inspection can be obtained that meets 

reliability and inspection interval constraints.  Such an optimization procedure can, 

thus, yield not only the most economical inspection schedule (i.e., lowest cost), but 

also one that can maintain the inspected detail at prescribed safety levels. 

(2) The maximum time between inspections, Tmax, is an important constraint that 

influences the number of inspections, the total cost, and the inspection strategy.  

When the inspection scheduling is constrained by Tmax, a greater number of 

inspections will typically be necessary which raises the fatigue reliability of the 

detail and, thus, lowers the expected cost of failure.  However, the cost of 

inspections and repairs increase, and the total cost grows as a result.  When the 

constraint on Tmax is removed, the schedule changes so as to require inspections only 

when the reliability curve gets close to the target reliability; this results in lower total 

costs. 

(3) As shown in the examples presented, the proposed scheduling method can be applied 

to both AASHTO and non-AASHTO type bridge details.  The effects of relative 

repair cost (KR), relative failure cost (KF), ADTT uncertainty, and target reliability 
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(βtarget) on inspection scheduling have all been studied.  It is seen that all of these 

affect inspection scheduling in a direct manner as is summarized below. 

(4) An increase in relative repair costs tends to yield an optimal schedule with fewer 

inspections because the total costs are governed by the repair costs.  A smaller 

number of inspections usually implies lower repair costs but potentially higher 

expected failure costs.  The optimal schedule occurs at a number of inspections that 

balances increasing failure costs and decreasing inspection and repair costs. 

(5) An increase in failure costs tends to yield an optimal schedule with more inspections 

because total costs, especially when the number of inspections is small, are governed 

by failure costs.  The fewer the inspections, the higher the failure costs.  This 

result is consistent with real-life expectations that more important details (where 

failure consequences are greater) usually demand more inspections to avoid failures. 

(6) With regard to the influence of ADTT (traffic) uncertainty, it can be seen that with 

increasing variability in the average daily truck traffic, a larger number of 

inspections is required for the optimal schedule.  Because uncertainty in ADTT 

leads to a lowering of the overall fatigue reliability of the detail, more inspections 

are needed to reduce the failure cost and, hence, the total cost to keep the fatigue 

reliability above the target reliability.  However, only for steel bridges where the 

ADTT has a COV greater than about 0.30 will it be necessary to have significantly 

more inspections than is the case when a constant ADTT is assumed. 

(7) A higher target reliability constraint (i.e., more stringent safety requirement) tends to 

exclude schedules with very few inspections because such schedules cannot maintain 

the fatigue reliability of the detail above the higher target reliability over the planned 

service life.  Higher target reliability levels typically require more inspections.  

This conclusion agrees with an expectation that a detail whose failure consequences 
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are greater will require more inspections to ensure the detail meets any imposed 

higher safety standards. 

(8) It is seen that a periodic two-year inspection schedule over the planned service life as 

is required by the FHWA for steel bridges will not be the optimal schedule for some 

details if one is interested in keeping costs low as well as maintaining safety.  

Though this periodic schedule has been shown to keep the fatigue reliability at a 

higher level than some optimal schedules obtained for the example bridges studied 

here, a larger number of inspections and repairs over the service life cause an 

increase in total cost.  The reliability-based fatigue inspection strategy presented 

here yields the optimal inspection schedule while maintaining prescribed safety 

levels for lower costs. 

(9) The effect of including quality of inspection results using, for example, probability 

of detection (POD) measures for NDT techniques employed, has not been taken into 

consideration in the proposed reliability-based inspection scheduling method.  In 

the results presented, this is valid as long as the prescribed crack size that warrants 

repair, aR, is defined as being large enough to be detected by the planned non-

destructive inspection (NDI) technique with certainty.  Chapter 6 describes a 

probabilistic approach that considers the inspection quality of various NDI 

techniques and seeks to determine both a set of proper NDI techniques and an 

associated inspection schedule for a given detail that guarantees a prescribed 

reliability and keeps cost at a minimum. 
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CHAPTER 6:  POD-BASED SELECTION OF NONDESTRUCTIVE 
INSPECTION TECHNIQUES FOR STEEL BRIDGES 

 

6.1 INTRODUCTION 

Steel bridges, an important part of the nation’s transportation infrastructure, are 

vulnerable to fatigue deterioration because of the repetitive traffic loading that they 

experience.  Non-destructive inspection (NDI) techniques, which can detect changes in 

material properties and/or flaws in structural details without impairing their use, are 

commonly used to detect and measure cracks in fracture-critical members of steel 

bridges.  The various NDI techniques suggested for use on steel bridges in the FHWA 

Bridge Inspector’s Training Manual (Hartle et al. (1995)) include Ultrasonic Inspection 

(UI), Magnetic Particle Inspection (MI), Penetrant Inspection (PI), Radiographic 

Inspection (RI), Acoustic Emission Inspection (AEI), and Visual Inspection (VI).  For 

all of these techniques, inspection accuracy, accessibility, frequency, cost, and 

consequences of detection failures (misses) or false indications (false calls) must be 

considered when selecting the appropriate NDI technique.  In Chapter 5, an optimization 

method was presented to solve the fatigue inspection scheduling problem using a 

reliability-based approach.  Issues related to inspection quality were not considered in 

the proposed reliability-based scheduling method based on justifiable and reasonable 

assumptions.  Though other reliability-based fatigue inspection scheduling methods in 

the offshore industry, such as the methods proposed by Sorensen et al. (1991), Faber et 

al. (1992a), and Cramer and Friis-Hansen (1992) include inspection quality in their 

analyses, it is not practical to calibrate the inspection quality coefficients and other 

parameters in their models so as to propose use of any single NDI technique (over 
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alternatives).  Also, these methods generally demand complicated reliability algorithms 

or large numerical simulation studies to obtain optimal inspection results; this limits their 

applicability to bridge maintenance with associated tighter budgetary constraints. 

An intuitive probabilistic approach for dealing with inspection quality is proposed 

in this chapter to select the most economical NDI method.  On completion of each 

analysis that involves Monte Carlo simulations, the method recommends a single NDI 

technique and accompanied inspection schedule for fracture-critical members in a steel 

bridge that guarantees a specified acceptable safety level through the planned service life 

of the bridge.  The actual Probability of Detection (POD) functions associated with the 

various NDI techniques are employed as the NDI detectabilities.  By combining 

probability calculations based on the use of the POD functions together with Monte Carlo 

simulations of the crack growth for the fracture-critical member, a total cost function is 

formulated that includes the expected cost of inspections and failure that result with each 

alternative NDI technique and inspection schedule.  The selection of an NDI technique 

with an associated inspection schedule for its use in the fracture-critical inspections is 

modeled as an optimization problem.  The POD function corresponding to the NDI 

technique and the inspection interval are optimization variables for this problem.  With 

appropriate constraints on inspection intervals and on a minimum (target) safety level, an 

optimal combination of NDI technique and inspection schedule that yields the minimum 

total cost and ensures the prescribed acceptable safety level for the specified detail can be 

obtained. 

 

6.2 PROBABILITY OF DETECTION 

The four possible outcomes – true positive (hit), false negative (miss), false 

positive (false call) and true negative (correct accept) – of any NDI procedure are 
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illustrated in Table 6.1 The probability of detection (POD) of a crack of a given size is 

the conditional probability of a true positive call given that a crack with that size exists.  

Hence, from repeated inspections, an estimate of the POD can be obtained as follows: 

 
FNTP

TPˆ
NN

NDOP
+

=  (6.1) 

where PÔD is the POD estimate for a specific crack size; NTP is the number of true 

positive calls; and NFN is the number of false negative calls.  Correspondingly, the false 

call probability (FCP) can also be evaluated as: 

 
TNFP

FPˆ
NN

NPCF
+

=  (6.2) 

where FĈP is the FCP estimate for a specific crack size; NFP is the number of false 

positive calls; and NTN is the number of true negative calls. 

After introducing cracks of various sizes into test specimens and performing 

inspections, POD estimates for various crack sizes from different NDI techniques can be 

obtained.  Based on the inspection results, generally, two analysis approaches – the 

Hit/Miss method and the Signal Response method – are employed to formulate the POD 

function, POD(a), for any crack size, a, with any NDI technique. 

 

Table 6.1: Four Possible Outcomes of NDI. 

  Is Crack Detected by NDI? 
  Yes No 
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 True Positive 
(Hit or Correct Reject) 

False Negative 
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6.2.1 Hit/Miss Method 

This method is applied when inspection data are recorded in terms of hits or 

misses (i.e., indicating whether or not a crack is detected).  This is commonly used, for 

example, for data from penetrant inspection and visual inspection tests.  The basic idea 

behind this method is to estimate the probability of detection PÔD for any given crack 

size from the hit and miss data by applying regression analysis or a maximum likelihood 

procedure.  Berens and Hovey (1981) proposed that the log-logistic function can 

provide a satisfactory model for hit/miss inspection data.  The log-logistic POD function 

can be expressed as: 

 ( ) ( )[ ]
( )[ ]a

aaPOD
lnexp1

lnexp
⋅++

⋅+
=

βα
βα  (6.3) 

where a is the crack size while α and β are statistical parameters to be estimated. 

Because of the binomial property of hit/miss data, the PÔD estimate for a fixed 

crack size is essentially the sample proportion of hits.  So, for a large number of 

inspections, M, performed for a particular crack size, the distribution of PÔD can be 

approximated by a normal distribution with mean and variance as follows: 

 ( ) PODDOPE =ˆ  (6.4) 

 ( ) ( )
M

PODPODDOPVar −
=

1ˆ  (6.5) 

In order to have a representative POD function for any NDI technique, reliable 

PÔD estimation for each crack size is necessary.  Accordingly, confidence interval 

calculation may be used which involves establishing the required number of inspections, 

Mreq, that will provide, say, 100(1−α) percent confidence that the error in using PÔD to 

estimate POD will be less than a specified level E.  This required number of inspections, 

Mreq, can be determined as follows (Miller and Freund, 1985): 
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where α is the significance level; zα/2 is the value of the standard normal variate with a 

cumulative probability level, (1−α/2).  Let x be the number of true positive calls (hits) 

out of Mreq inspections.  Note that Equation 6.6 implies that if (x/Mreq) is used as an 

estimate for POD, we can assert with (1–α)100 confidence that the error will not exceed 

E. 

 

6.2.2 Signal Response Method 

This method is applied for inspection results recorded in terms of parameters â 

indicating signal responses to stimuli (cracks), such as the inspection results produced by 

ultrasonic inspection and eddy current inspection.  For â values below the recording 

signal threshold, âth, no signal is recorded.  For crack sizes exceeding the signal 

saturation limit, âsat, of the recording system, the corresponding â values stay the same as 

âsat.  However, â values are displayed when they are greater than a specified decisive 

value, âdec.  Between âth and âsat, â values can be expressed as the following regression 

relationship with crack size: 

 ( ) ( ) εββ ++= aa lnˆln 10 ;  âth < a < âsat (6.7) 

where β0 and β1 are regression parameters and ε is normally distributed with a zero mean 

and a standard deviation σε .   As shown in Figure 6.1, the probability of detection 

function for a given crack size a, POD(a), can be expressed as: 

 ( ) ( )[ ] ( ) ( )decaaa aadec aFadafaaaPaPOD
dec

ˆ1ˆˆˆˆ |ˆˆ |ˆ −==≥= ∫
∞

 (6.8) 

where ( )af aa ˆ|ˆ  is the probability density function of the signal value, â, for a given crack 

size, a; ( )aF aa ˆ|ˆ  is the cumulative density function of the signal value, â, for a given 
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crack size, a.  Combining Equations 6.7 and 6.8, Berens (1989) suggested the POD 

function from the signal response method as follows assuming a is lognormal: 

 ( ) ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−

Φ=
1

10ˆlnln
βσ

ββ

ε

decaaaPOD  (6.9) 

In this study, the POD function from each considered NDI technique with respect 

to the detail of interest is taken as the NDI capability.  The POD function representing 

the corresponding NDI technique and other factors such as cost of the proposed technique 

will affect the optimal inspection results. 

 

 

Figure 6.1: Probability of Detection Function, POD(a), Calculation in Signal Response 
Method (Berens, 1989). 
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6.3 FATIGUE CRACK GROWTH MODEL 

The basic fatigue crack growth model can be derived from the Paris and Erdogan 

relation (Paris’ Law) and Linear Elastic Fracture Mechanics (LEFM).  As described in 

Equation 4.31, the relation linking crack size and the number of stress cycles can be 

rewritten as: 

 
( )[ ]

m
RE

a

a m SNC
aaF

daN ⋅⋅=∫
0

  
π

 (6.11) 

where a0 is the initial crack size and aN is the crack size after N stress cycles.  If Ψ(a) is 

defined as the indefinite integral form of the left side term of Equation 6.11, this equation 

can be rewritten as: 

 m
REN SNCaa ⋅⋅=Ψ−Ψ )()( 0  (6.12) 

The crack growth function can then also be represented as: 

 [ ]m
REN SNCaa ⋅⋅+ΨΨ= − )( 0

1  (6.13) 

Generally, the material properties (C and m) and initial crack size (a0) are 

described as random variables as was described in Chapter 4.  The crack size, aN is a 

function of the accumulated number of stress cycles (N) while the equivalent stress range 

(SRE) for the detail can be evaluated as was described in Chapter 3.  The geometry 

function F(a) for a specific fatigue detail in a steel bridge can be obtained from available 

stress intensity manuals or derived using fracture mechanics principles.  In addition, the 

number of stress cycles (N) can be associated with number of years in service (Y) through 

Equation 4.13. 

Consider a fracture-critical member in a steel bridge that has a constant geometry 

function and substitute Equation 4.13 into Equation 6.13.  Upon integration, the crack 

growth function related to years in service, Y, for this detail may be expressed as follows 

(see Madsen et al. (1985)): 
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 ( ) ( )[ ]YCADTTSCaYa S
m
RE ⋅⋅⋅⋅⋅⋅⋅= 365exp0 π  for m = 2 (6.15) 

 

According to LEFM, a crack will fracture when the stress intensity factor, K, of 

the crack exceeds the fracture toughness, Kc, of the material.  In other words, the crack 

growth functions, such as Equations 6.13, 6.14 and 6.15, are valid only as long as the 

crack size is smaller than the critical crack size, acr, related to Kc. 

 

6.4 SIMULATION OF CRACK PROPAGATION AND INSPECTION 
SCENARIOS 

 

 

Figure 6.2: Probability of Detection Mapping. 
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Consider a situation where n nondestructive fatigue inspections are performed on 

a fracture-critical member of a steel bridge at fixed points in time, y1, y2, … , yn.  In each 

possible crack growth curve realization, the crack in the detail is assumed to reach its 

critical crack size at a time, ycr (i.e., a(ycr) = acr).  By applying a crack growth model, the 

crack size, ai, associated with each inspection time, yi, can be obtained.  By mapping 

each such crack size, ai, onto the POD curve diagram related to the applied NDI 

technique, the probability of detecting the crack size, ai, denoted as pi can be determined.  

This mapping procedure is shown in Figure 6.2.  Therefore, the probability of not 

detecting a crack, Pnd, and the probability of detecting a crack, Pd, before fracture can be 

expressed as: 

 ( )∏
=

−=
n

i
ind pP

1

1  (6.16) 

 ( )∏
=

−−=−=
n

i
indd pPP

1

111  (6.17) 

where pi is the probability of detection for a given crack size at the ith inspection by 

applying the selected NDI technique; and n is the number of inspections before fracture.  

Fixed-interval inspection schedules are considered in this study in order to conform to 

practical application of such inspections for bridges.  If the fixed inspection interval, yint, 

for a schedule and time to fracture, ycr, are known, the value of n can be determined 

without difficulty. 

The initial crack size (a0), material properties (C and m) for the detail, and traffic-

related quantities (ADTT, Cs, and SRE) are taken as random variables with specified 

probability distributions.  Considering the resulting uncertainty in the crack growth 

model, the Monte Carlo method is applied to simulate possible crack growth curves as 

shown in Figure 6.3.  Each crack growth simulation, i, provides two quantities of 

interest: one is the probability that a crack is not detected before fracture results, Pnd,i, and 
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the other is the number of inspections, ni, before fracture.  On accumulating the results 

of all the crack growth simulations, the expected probability of not detecting a crack, 

E(Pnd), before fracture and the expected number of inspections, E(n), before fracture can 

be obtained as follows: 
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=
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i
indnd P

N
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sim
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where Nsim is the number of simulations.  By employing a sufficiently large number of 

simulations, converged estimates of E(Pnd) and E(n) can be obtained.  For the given 

POD curve associated with the selected NDI technique and the selected inspection 

schedule, E(Pnd) represents a risk that the applied NDI technique will fail to detect the 

existing crack in a detail before a fracture occurs.  Also, E(n) represents the expected 

number of inspections with the selected NDI method that may be performed during the 

fatigue life of the detail (i.e., before fracture occurs).  It should be noted that the crack 

growth simulations here do not account for any repair activity. 

 

 

Figure 6.3: Crack Growth Curves from Monte Carlo Simulations. 
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Figure 6.4: Crack Growth Models for ycr ≤ y1 and ycr > y1. 

Because the crack growth curves are simulated randomly by the Monte Carlo 

method, it may be the case that the time till failure, ycr, in a single simulation may be 

longer or shorter than the time, y1, when the first inspection is performed as shown in 

Figure 6.4.  For simulations with detail lives longer than the first inspection time, 

Equation 6.20 below can be employed to compute the expected probability of not 

detecting a crack.  The expected number of inspections can also be determined 

correspondingly as indicated in Equation 6.21.  Note that for simulations where the 

fatigue life is shorter than the time till the first inspection, the probability of not detecting 

a crack is 1 since no inspections are performed before acr is reached.  The realizations of 

Monte Carlo simulations that enable computation of E(Pnd) and E(n) are demonstrated in 

Figure 6.5 and the computations of E(Pnd) and E(n) are expressed as follows: 
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where N1 is the number of simulations that ycr ≥ y1; N2 is the number of simulations that 

ycr < y1; Nsim (= N1 + N2) is the number of total simulations; and ni is the number of 

inspections in the ith simulation. 
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Figure 6.5: Monte Carlo Simulation Scenarios. 
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6.5 OPTIMAL NDI TECHNIQUE 

Practical challenges for bridge inspectors include coming up with answers to 

questions such as “What kind of NDI techniques should I use and how often should I 

perform this NDI technique?”  At present in the U.S., inspections for fracture-critical 

members in steel bridges are planned based on the FHWA two-year interval requirement 

and on the responsible engineer’s experience.  As discussed in previous chapters, these 

schedules might not be optimal for all types of fatigue details on steel bridges.  A 

rational method of selecting suitable NDI techniques for fatigue details in steel bridges 

can be useful.  A probabilistic method is proposed for selection of an optimal NDI 

technique and associated inspection schedule for fracture-critical members using LEFM-

based fatigue analysis, actual NDI detectabilities, and Monte Carlo simulations.  This 

procedure is formulated so as to yield a balanced solution that takes into consideration 

both economy and safety. 

 

6.5.1 Cost Function 

To transform the problem of selection of a proper NDI technique to an 

optimization problem, a cost function needs to be defined that reflects the consequences 

of choosing a NDI technique and an associated inspection schedule for the detail or 

member under consideration.  With the expected number of inspections, E(n), and the 

expected probability of not detecting a crack, E(Pnd), using a selected NDI technique and 

inspection schedule, the cost function including the cost of inspections and the expected 

cost of failure can be easily assembled as is done in the following: 
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Cost of Inspections 

From the Monte Carlo simulation, E(n) represents the expected number of 

inspections for the specified detail if applying the selected NDI technique and the 

associated inspection schedule.  Let KI denote the cost of a single inspection of the 

specified detail.  Then, the expected total cost of inspections over the service life, CI, 

can be represented as: 

 ( )nEKC II ⋅=  (6.22) 

 

Cost of Failure 

From the Monte Carlo simulations, E(Pnd) represents the expected probability of 

not detecting a crack in the specified detail or member by the chosen NDI technique and 

schedule before failure.  If, in the simulations, an NDI technique continuously fails to 

detect the growing crack in the detail, the expected fatigue failure probability will be 

high.  Therefore, E(Pnd) also gives an indication of the likelihood of fatigue failure for 

the detail over the service life as a result of failure to detect a growing by the selected 

NDI technique.  The risk of fatigue failure for the specified detail that results from 

employing a specific NDI technique can be represented by estimating the (expected) cost 

of failure, CF.  If the detail/member under consideration is fracture-critical, its failure 

could cause failure of the span where the detail is located or even failure of the entire 

bridge.  Hence, the cost of failure should include the possible cost of rebuilding a span 

or the entire bridge, as appropriate, as well as costs due to lost use, injuries, fatalities, etc. 

– not all of which are easily and uncontroversially estimated.  Nevertheless, all of these 

potential costs are summed to yield a quantity, KF, which represents the cost associated 

with a failure.  The likelihood of such failures is the other term that should be included 
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in arriving at the expected cost of failure CF.  Hence, the expected cost of failure for the 

specified member or detail over the service life may be defined as: 

 ( )ndFF PEKC ⋅=  (6.23) 

Total Cost 

Using the definitions of the cost of inspections and failure in Equations 6.22 and 

6.23 that result from selection of an NDI technique and its associated inspection 

schedule, the total cost, CT, may be represented as: 

 FIT CCC +=  (6.24) 

 ( ) ( )ndFIT PEKnEKC ⋅+⋅=  (6.25) 

 

6.5.2 Optimization Variables 

The POD function corresponding to an NDI technique and the fixed interval, yint, 

employed in an inspection program are two optimization variables in our optimization 

problem.  The reason for employing a fixed-interval inspection schedule here is to 

conform with the practical realities of bridge inspections.  The POD function for the 

chosen NDI technique directly affects the value of E(Pnd) and the inspection interval, yint, 

affects E(n) and E(Pnd).  As a result, the total cost defined in Equation 6.25 is influenced 

by the POD function and the inspection interval, yint, in a direct manner.  By changing 

the POD function and the value of the fixed inspection interval, yint, an optimal 

combination of POD function and yint that yields the minimum cost can be found.  This 

solution corresponds effectively to selection of an inspection plan that employs an NDI 

technique that provides the desired POD function and associated inspection schedule with 

the desired fixed-inspection interval. 
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6.5.3 Constraints 

A target non-detection probability, Pnd,max, defined as the maximum allowable 

probability of not detecting a crack (i.e., the minimum acceptable safety level) for the 

NDI technique applied on the specified fatigue detail is applied as a constraint to exclude 

combinations of NDI techniques and inspection schedules that might be deemed unsafe 

because E(Pnd) is too high.  This constraint can be expressed as: 
 ( ) max,ndnd PPE <  (6.26) 

Additionally, restrictions are placed on the time between inspections so that this 

inter-inspection interval is neither too large (upper bound, ymax) nor too short (lower 

bound, ymin).  Such constraints on the inspection interval may be required by local and 

state transportation agencies.  Hence, a second constraint on the inspection interval for 

the optimization problem is: 

 maxintmin yyy <<  (6.27) 

 

6.5.4 Formulation of Optimization Problem 

In summary, the optimization problem for selecting an optimal NDI technique and 

associated inspection schedule may be formulated as follows: 
 ( ) ( )ndFITy

PEKnEKC ⋅+⋅= min
int POD,

 (6.28) 

 optimization variables: POD function and inspection interval, yint 
 subjected to: ( ) max,ndnd PPE < ; maxintmin yyy <<  

Upon minimizing the total cost, an optimum inspection interval, yint, may be found.  In 

addition, by changing the POD functions, i.e., changing the NDI technique, the total cost 

corresponding to the different POD functions may be compared so as to finally yield the 

optimization solution for the NDI technique and an associated inspection schedule. 
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To solve the optimization problem, the Monte Carlo Method is employed to 

calculate the expected probability of not detecting a crack, E(Pnd), and the expected 

number of inspections, E(n), for a given NDI technique and an associated inspection 

schedule by treating the initial crack size (a0), crack growth parameter (C), and crack 

growth exponent (m) as random variables.  After obtaining E(Pnd) and E(n), the total 

cost due to the given NDI technique and associated schedule can be evaluated.  By 

changing the NDI technique and inspection schedule, several computations of total cost 

are obtained.  The optimal choice comes from the NDI technique and schedule that lead 

to the minimum total cost.  A flow chart describing this procedure is shown in Figure 

6.6 
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Figure 6.6: Flow Chart of Optimization Procedure. 
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6.6 NUMERICAL EXAMPLES 

6.6.1 Box-Girder Example I 

Two full-penetration butt welds in the bottom (tension) flange of a newly built 

steel box girder bridge, similar to the box girder example in Chapter 5, are studied in this 

example for which we seek an optimal NDI technique and an optimal inspection schedule 

for future service years.  It is assumed that failure of the butt weld detail will result in 

collapse of the box-girder span.  An inherent flaw is assumed to exist in the butt welds 

of the 60 in. width (w) bottom flange as shown in Figure 6.7.  The initial flaw size, a0, is 

modeled as a lognormally distributed random variable with a mean value of 0.02 in. and a 

coefficient of variation of 0.5.  The critical crack size, acr, is considered to be constant at 

2 inches in this example.  The fatigue growth parameter, C, is modeled as a lognormal 

variable with a mean value of 2.05×10-10 and a coefficient of variation of 0.63, assuming 

units of inches for crack size and ksi-in½ for fracture toughness.  The fatigue growth 

exponent, m, is modeled as a normally distributed random variable with a mean value of 

3.0 and a coefficient of variation of 0.1.  The average daily truck traffic, ADTT, and the 

number of stress cycles per truck passage, Cs, for the box girder bridge are taken to be 

600 and 1.0, respectively.  A Rayleigh distribution is employed to model the stress 

range spectrum for the bottom flange of the bridge and SR0 is taken as 6.334 ksi for the 

stress range. 

Three NDI techniques − ultrasonic inspection (UI), magnetic particle inspection 

(MI) and penetrant inspection (PI) − are considered here for the butt weld detail.  The 

probability of detection (POD) functions for these three techniques, shown in Figure 6.8, 

are based on POD data from the flat plate testing results collected by Rummel and 

Matzkanin (1997) and are shown only for illustrative purposes.  In practice, the POD 
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functions for the three NDI techniques ought to be obtained from numerous tests of 

similar butt weld details because the POD function of each NDI technique depends on the 

actual test object (form and material), the anomaly condition, the NDI procedure and the 

operator, as was observed by Rummel (1998).  The three illustrative POD functions are 

described in Table 6.2.  Two cases of relative costs of the three types of nondestructive 

inspections and of the cost of failure are considered here: (i) KI,PI : KI,MI : KI,UI : KF = 1.0 : 

1.2 : 1.5 : 2.0×104; and (ii) KI,PI : KI,MI : KI,UI : KF = 1.0 : 1.2 : 1.5 : 4.0×104.  The 

maximum acceptable probability of not detecting a crack over the service life is taken to 

be 0.005, i.e. E(Pnd) < 0.005 or Pnd,max = 0.005, in this example. 

 

 

Figure 6.7: Detail in the Fracture-Critical Member of the Box Girder Bridge. 
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Figure 6.8: Probability of Detection (POD) Curves for Penetrant, Magnetic Particle, and 
Ultrasonic Inspections. 

 

Table 6.2: POD Functions for Penetrant, Magnetic Particle, and Ultrasonic Inspections. 

 

( ) ( )[ ]
( )[ ]a

aaPOD
lnexp1

lnexp
⋅++

⋅+
=

βα
βα  

 
NDI technique α β 

UI 9.540 2.986 

MI 2.420 0.604 

PI 0.710 0.393 
The form of the POD model used is proposed by Berens and 
Hovey (1981) where α and β are estimated by the maximum 
likelihood method. 
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Because the initial crack size, a0, compared to the width of the bottom flange, w, 

is relatively small (a0/w ≈ 3.3×10-4), the geometry function F(a) is taken to be unity for 

simplicity to model the stress intensity factor for the crack.  Therefore, Equations 6.14 

and 6.15 can be employed as the crack growth functions in our example.  Figure 6.9 

demonstrates the probability distribution of the fatigue life, Ycr, for the considered detail 

over 250 years of the considered detail.  Figure 6.10 shows 350 simulated crack growth 

curves for the detail under consideration based on the Monte Carlo method. 
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Figure 6.9: Probability Distribution of Time to Failure, Ycr, from 0 to 250 Years. 
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Figure 6.10: Crack Growth Simulations (350 simulations; acr = 2 in.). 

 

Five million Monte Carlo simulations are carried out in order to achieve stable 

results for the first case of the relative costs of the three nondestructive inspections and 

failure, namely, KI,PT : KI,MT : KI,UT : KF = 1.0 : 1.2 : 1.5 : 2.0×104.  Figures 6.11, 6.12 

and 6.13 illustrate the costs for various fixed-interval schedules for the ultrasonic, 

magnetic particle, and penetrant inspections, respectively.  It is noted, in these figures, 

that each inspection interval, yint, on the abscissa essentially represents a schedule that 

employs yint as inspection interval for the detail under consideration over the service life.  

The three figures show a tendency for inspections schedules with a longer fixed 

inspection interval to have a lower expected cost of inspections, CI, but to simultaneously 

cause a higher expected cost of failure, CF.  On the other hand, schedules with a shorter 

inspection interval have higher expected cost of inspections, CI, but lower expected cost 

of failure, CF.  The higher expected cost of inspections results from the increased 



 170

number of inspections expected for the detail due to the shorter inspection interval.  The 

lower expected cost of failure results from the smaller likelihood of failing to detect the 

crack before fracture occurs.  The combined effect of CI and CF for different inspection 

intervals results in an optimal inspection interval, yint,opt, that yields the lowest total cost, 

CT,min, and the optimal schedule with yint,opt for each NDI technique as shown in the three 

figures.  Before comparing the optimal inspection intervals, yint,opt, for each of the three 

nondestructive inspections to obtain the optimal inspection schedule for the detail, the 

constraint E(Pnd) < 0.005 needs to be verified first to identify the feasible schedules as 

shown in Figure 6.14.  For the ultrasonic inspection, feasible schedules are all those 

where the fixed inspection interval is less than or equal to 5 years.  For the magnetic 

particle inspection, the maximum feasible inspection interval is 4 years.  Finally, for the 

penetrant inspection, the maximum feasible inspection interval is only 2 years.  After 

eliminating the infeasible schedules, the most economical schedule with the ultrasonic 

method is to perform inspections every 3 years, which yields a total cost of 63.9 (see 

Figure 6.11).  For the magnetic particle inspection, the most economical schedule is to 

inspect every 2.5 years, which yields a total cost of 66.1 (see Figure 6.12).  Finally, as 

seen in Figure 6.13, inspecting every 1.5 years, which results in a total cost of 95.4, is the 

best choice for the penetrant inspection.  Combining Figures 6.11, 6.12, 6.13 and the 

constraint on E(Pnd), Figure 6.15 shows total costs for the feasible and infeasible 

schedules with the three NDI techniques.  Note that each marker “×” in Figure 6.15 

indicates an infeasible schedule that fails to meet the constraint, E(Pnd) < 0.005.  It can 

be seen that the optimal schedule is to perform ultrasonic inspections every 3 years.  As 

shown in Table 6.3, even though a single ultrasonic inspection is more expensive than a 

single magnetic particle or penetrant inspection (KI,PT : KI,MT : KI,UT : KF = 1.0 : 1.2 : 1.5), 

the less frequent inspections and the higher flaw detectability with the UI technique 



 171

together yield lower total costs than that resulting from use of the other two NDI 

techniques.  Both, the magnetic particle and the penetrant inspection, have lower single 

inspection costs, but the greater number of inspections and the higher probability of 

failing to detect a crack resulting from a lower flaw detectability cause higher total costs 

than with the ultrasonic inspections. 
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Figure 6.11: Costs of Ultrasonic Inspections for Various Fixed-Interval Schedules for 
KI,UI : KF = 1.5 : 2×104. 

 

 

 



 172

C T ,min = 66.1

y int,min = 2.5 yrs

0

50

100

150

200

250

300

350

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Inspection Interval  y int (years)

C
os

t
Total Cost

Cost of Inspections

Cost of Failure

 

Figure 6.12: Costs of Magnetic Particle Inspections for Various Fixed-Interval Schedules 
for KI,MI : KF = 1.2 : 2×104. 
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Figure 6.13: Costs of Penetrant Inspections for Various Fixed-Interval Schedules for KI,PI 
: KF = 1.0 : 2×104. 
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Figure 6.14: Expected Probabilities of Failing to Detect the Growing Crack, E(Pnd), for 
the UI, MI and PI Techniques Compared with the Maximum Acceptable 
Probability of Non-Detection, Pnd,max. 
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Figure 6.15: Cost Comparison of UI, MI and PI in Various Fixed-Interval Schedules for 
KI,PI : KI,MI : KI,UI : KF = 1.0 : 1.2 : 1.5 : 2×104 with the Constraint, Pnd max = 
0.005. 

P nd ,max = 0.005

P nd ,max = 0.001

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

1.4E-02

1.6E-02

1.8E-02

2.0E-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Inspection Interval yint (years)

E
( P

nd
)

Ultrasonic Inspection

Magnetic Particle Inspection

Penetrant Inspection



 174

 

Table 6.3: Optimal Results for the UI, MI and PI Techniques with the Constraint, 
Pnd,max = 0.005. 

NDI Technique E(n) E(Pnd) yint,opt (years) CT,min 

Ultrasonic 31.2 8.26×10-4 3.0 63.9 

Magnetic Particle 38.0 1.02×10-3 2.5 66.1 

Penetrant 63.6 1.59×10-3 1.5 95.3 

 

The constraint, Pnd,max = 0.005 (i.e., E(Pnd) < 0.005), eliminates some infeasible 

inspection schedules, typically those schedules with long inspection intervals. A 

relatively larger number of schedules are eliminated for any NDI technique that has lower 

detectability, such as PI.  From Figure 6.15, it can be seen that the optimal schedule for 

the case where Pnd,max is 0.005 can be directly identified from the local minima of the 

three NDI curves so that the Pnd,max constraint virtually does not affect the optimization 

solution in this case.  However, when a stricter constraint, Pnd,max = 0.001 (i.e., E(Pnd) < 

0.001), is applied to the same problem, it is obvious that a greater number of schedules 

become infeasible as shown in Figure 6.16.  As a result, the optimal inspection interval 

for PI changes from 1.5 years (CT = 95.3) to 1.0 year (CT = 104.6), and the corresponding 

optimal inspection interval for MI changes from 2.5 years (CT = 66.1) to 2 years (CT = 

67.0).  Both these NDI methods therefore demand more frequent inspections to satisfy 

the stricter Pnd,max constraint which, hence, result in higher total costs.  Because the 

schedule yielding the minimum total cost (CT = 63.9) in the ultrasonic inspection is not 

yet affected by the stricter constraint, the optimal schedule with the stricter constraint 

remains unchanged from the case when Pnd,max was 0.005. 
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Figure 6.16: Cost Comparison of UI, MI and PI in Various Fixed-Interval Schedules for 
KI,PI : KI,MI : KI,UI : KF = 1.0 : 1.2 : 1.5 : 2×104 and with the Constraint Pnd max 
= 0.001. 

 

For the higher relative failure cost case (ii) where KI,PT : KI,MT : KI,UT : KF = 1.0 : 

1.2 : 1.5 : 4.0×104 and with the constraint, Pnd,max = 0.005, the E(n) and E(Pnd) values 

from the Monte Carlo simulations remain the same as in the lower failure cost case, but 

the higher relative failure cost, KF, raises the failure cost curve twice as high as the failure 

cost in the lower relative failure cost case.  This in turn results in higher total costs for 

each of the three NDI techniques, especially for those schedules having large E(Pnd) 

values (see Figures 6.17, 6.18 and 6.19).  Compared to the lower relative failure cost 

case, the higher total cost curve shifts the schedule with the minimum cost to one with 

shorter inspection intervals for each NDI technique.  Comparing Figures 6.15 and 6.20, 

the schedule with the minimum total cost for UI changes from a 3-year inspection 
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interval (with CT = 63.9) to a 2.5-year interval (with CT = 74.5).  The 3-year periodic 

schedule in the higher failure cost case has a total cost of 80.4 for UI and is therefore no 

longer the best schedule.  For MI, the schedule changes from a 2.5-year inspection 

interval (with CT = 66.1) to a 2-year interval (with CT = 76.8), and, for PI, the schedule 

changes from a 1.5-year inspection interval (with CT = 95.3) to a 1-year interval (with CT 

= 113.4).  Finally, the optimal schedule in the higher relative failure cost case is to 

employ UI techniques for inspections every 2.5 years.  The increase in the relative 

failure cost, KF, affects the optimization solution in a direct manner.  In the proposed 

POD-based optimization procedure, higher KF values tend to yield an optimal strategy 

that demands more frequent inspections and higher NDI detectability.  This tendency is 

evident in the optimization results and is consistent with the expectation that more 

important details or members should require more frequent and precise inspections. 
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Figure 6.17: Costs of Ultrasonic Inspections for Various Fixed-Interval Schedules for 
KI,UI : KF = 1.5 : 4×104. 
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Figure 6.18: Costs of Magnetic Particle Inspections for Various Fixed-Interval Schedules 
for KI,MI : KF = 1.2 : 4×104. 

 

C T  = 113.4

yint,opt = 1 yr

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Inspection Interval y int (years)

C
os

t

Total Cost

Cost of Inspections

Cost of Failure

 

Figure 6.19: Costs of Penetrant Inspections for Various Fixed-Interval Schedules for KI,MI 
: KF = 1.2 : 4×104. 



 178

marker "x": infeasible schedules

For UI,

For MI,

For PI,

y int,opt = 2.5 yrs

y int,opt = 1.0 yrC T ,min=113.4,

y int,opt = 2.0 yrsC T ,min = 76.8,

C T ,min = 74.5,

0

100

200

300

400

500

600

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Inspection Interval  y int (years)

C
os

t

Ultrasonic Inspection (UI)

Magnetic Particle Inspection (MI)

Penetrant Inspection (PI)

 

Figure 6.20: Cost Comparison of UI, MI and PI in Various Fixed-Interval Schedules for 
KI,PI : KI,MI : KI,UI : KF = 1.0 : 1.2 : 1.5 : 4×104 with the Constraint Pnd max = 
0.005. 
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Figure 6.21: Cost Comparison of UI, MI and PI in Various Fixed-Interval Schedules for 
KI,PI : KI,MI : KI,UI : KF = 1.0 : 1.2 : 1.5 : 4×104 with the Constraint Pnd max = 
0.001. 
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Since the E(Pnd) values for all schedules in the three NDI techniques remain the 

same as the values in Figure 6.14, because they are not affected by the higher relative 

failure cost, KF, the infeasible schedules for the three NDI techniques under the 

constraint, Pnd,max = 0.001, are the same as the infeasible schedules in the lower relative 

failure cost case with the same Pnd,max constraint (see Figure 6.16).  The schedules for 

UI, MI, and PI with a fixed-inspection interval greater than and equal to 3.5 years, 2.5 

years, and 1.5 years, respectively, are identified as infeasible.  It can be seen in Figure 

6.21 that the constraint, Pnd,max = 0.001, does not influence the schedule with the 

minimum total cost for each NDI technique so that the optimal NDI technique and the 

associated strategy is still to carry out ultrasonic inspections and every 2.5 years. 

In addition, as the results have shown in the two cases discussed, the present two-

year periodic inspection required by the FHWA may not be the optimal schedule for the 

butt weld detail inspected by any of the three NDI techniques.  Except for the two-year 

periodic MI schedule in the higher failure cost case (ii), the two-year periodic schedules 

using the other two NDI techniques result in higher total costs than the optimal schedule. 
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6.6.2 Box-Girder Example II 

Two optimal fatigue inspection schedules, generated using the reliability-based 

scheduling method of Chapter 5 and the POD-based method of Chapter 6 for the same 

box-girder example in Section 5.7.2, are compared in this example.  The same three 

NDI techniques (UI, MI, and PI) and their associated POD functions described in Section 

6.6.1 (i.e., Box-Girder Example I) are utilized in this example as well.  The relative 

costs of the three NDI techniques and of failure are KI,PI : KI,MI : KI,UI : KF = 1.0 : 1.2 : 1.5 

: 1×105.  The relative cost of repair, KR, considered in the reliability-based scheduling 

method is taken as 10 times that of KI,PI.  With respect to safety constraints, the 

reliability-based scheduling method employs a target reliability index, βtarget, of 3.7, and 

the POD-based method employs a maximum allowable probability of not detecting a 

crack, Pnd,max, equal to 0.005.  The POD-based method is suitable for seeking the 

optimal schedule from among all schedules with fixed inspection intervals.  Hence, for 

comparison purposes, the reliability-based method is altered so that the search for the 

optimal schedule is carried out with uniform intervals only.  Due to the different total 

cost (CT) formulations in the two methods, these costs cannot be compared directly with 

each other.  However, schedules for the lowest costs with each method may be 

compared. 

Based on a prescribed crack size warranting repair, aR, the reliability-based 

scheduling approach usually assumes an ideal inspection quality for the employed NDI 

technique.  In this example, this prescribed crack size for repair is assumed to be 0.2 in, 

which can be detected by the ultrasonic inspection (UI) technique with almost 100% 

certainty, as shown in Figure 6.8.  Hence, the optimization results from the reliability-

based scheduling method can be thought to represent the optimal schedule for the given 
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UI technique.  With the pre-defined relative costs of inspection (UI), repair, and failure 

(KI,UI : KR: KF = 1.5 : 10 : 105) in the proposed reliability-based scheduling approach, 

Figure 6.22 illustrates the total costs for various fixed-interval schedules.  It can be seen 

that the optimal fixed-interval schedule analyzed by the reliability-based method for the 

detail suggests performing ultrasonic inspections every 5 years.  The planned service 

life does not affect the optimization result for the reliability-based approach as can be 

seen in Figure 6.22. 
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Figure 6.22: Total Costs of Various Fixed-Interval Schedules using the Reliability-Based 
Scheduling Method (KI,UI : KR : KF =1.5 : 10 : 105). 

 

With the relative costs of PI, MI, UI, and of failure (KI,PI : KI,MI : KI,UI : KF = 1.0 : 

1.2 : 1.5 : 105) in the POD-based scheduling approach, the total costs for the various 

fixed-interval schedules with each given NDI technique are shown in Figure 6.23.  It 
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can be seen that the best schedule for the UI technique requires inspections on the detail 

every 4 years, which yields a total cost of 90.7.  For the MI technique, a 3-year periodic 

inspection schedule for the detail, which yields a total cost 94.3, is optimal.  For the PI 

technique, inspecting the detail every 2 years, which produces a total cost of 140.0, is the 

optimal schedule.  As can be seen, NDI techniques with lower crack detectabilities 

require shorter intervals between inspections in the optimal schedule.  Using the POD-

based method, the UI technique with a 4-year periodic inspection schedule, which yields 

the lowest total cost of 90.7, provides an optimal inspection scheduling strategy for the 

detail. 
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Figure 6.23: Total Cost Comparison of UI, MI and PI in Various Fixed-Interval 
Schedules using the POD-Based Scheduling Method for KI,PI : KI,MI : KI,UI : 
KF = 1.0 : 1.2 : 1.5 : 105 with the Constraint, Pnd max = 0.005.  
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Comparing the results from the reliability-based method and the POD-based 

method, it is found that, for the same detail and using the same UI technique, these two 

methods recommend different optimal schedules.  The reliability-based method suggests 

that the optimal strategy with the UI technique should employ a 5-year periodic 

inspection schedule.  However, the POD-based method recommends a more 

conservative 4-year inspection interval schedule.  The reason that the two methods yield 

different optimal schedules is due to the different assumptions implicit in the two 

optimization approaches.  Through the event tree analysis, the reliability-based method 

considers possible repair effects on a detail after each inspection, and thus takes into 

account the possible extended service life of the detail due to the possible repair scenarios 

modeled.  The POD-based method, on the other hand, does not include any repair 

effects during the crack propagation process, and therefore does not consider any 

extended service life that might result when repairs are carried out.  When scheduling a 

detail without considering any possible plan of fatigue life extension due to repairs, the 

POD-based method rationally will yield a more conservative schedule than the optimal 

schedule derived by using the reliability-based method in which the extended fatigue life 

of the detail is explicitly taken into consideration.  
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6.7 SUMMARY 

A probabilistic approach for selecting an optimal NDI technique and an 

associated inspection schedule for fracture-critical members in steel bridges has been 

presented.  The method builds upon LEFM fatigue analysis and the actual detection 

capabilities of NDI techniques for the fracture-critical member of interest, and then 

employs the probability of detection information in Monte Carlo simulations to formulate 

an optimization problem.  Solution of this optimization problem yields the most suitable 

NDI technique and associated inspection schedule for the detail.  The findings of this 

chapter can be summarized as follows: 

(1) As can be seen in the cost-yint (cost vs. inspection interval) diagrams presented, for a 

given NDI technique, the total cost is controlled by the cost of inspections for 

schedules with short inspection intervals (i.e., the schedules involving frequent 

inspections).  The shorter the fixed inspection interval employed in the schedule, 

the greater will be the cost of inspections for that schedule.  For schedules with 

longer inspection intervals, the total cost is governed by the cost of failure.  The 

longer the fixed inspection interval in the schedule, the greater will be the cost of 

failure for that schedule.  Hence, a valley-shaped total cost curve is generated.  

After applying the Pnd,max constraint to eliminate some infeasible schedules, the 

optimal schedule for an NDI technique can usually be found at the bottom of the 

valley-shaped total cost curve. 

(2) Comparing NDI techniques (as was done in Table 6.3), an NDI technique with a 

lower crack detectability will normally demand more inspections (E(n)) than an NDI 

technique with a higher crack detectability to achieve the schedule with the 

minimum total cost (i.e., the optimal schedule for the NDI technique).  This result 
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is consistent with the practical experience where more inspections are needed for an 

NDI technique with a low crack detectability to ensure inspection quality. 

(3) From the results of the numerical examples presented, it is seen that the two-year 

periodic inspection schedule required by the FHWA over the service life may not be 

the optimal (lowest-cost) schedule for some NDI techniques and details.  The 

optimal schedule for a specified fracture-critical member needs to consider the NDI 

technique applied and the fatigue performance of the member.  The POD-based 

method presented here yields a more rational inspection strategy than an arbitrarily 

specified two-year inspection schedule. 

(4) The optimization results are affected by the NDI detectabilities (i.e., POD functions), 

the constraint on the expected probability of not detecting a crack, E(Pnd), and the 

relative costs of inspection and failure. 

(5) Regarding the effect of crack detectability, it can be seen from the examples 

presented (such as in Figure 6.14), that the NDI technique with the higher 

detectability for cracks tends to yield a lower E(Pnd) especially for schedules with a 

longer inspection interval.  This lower E(Pnd) contributes in turn to lower costs of 

failure in the total cost.  However, an NDI technique with a higher crack 

detectability is usually more expensive and involves higher inspection costs. 

(6) Regarding the effect of the Pnd,max constraint, it is found that by lowering the Pnd,max 

value (i.e., raising the safety level of a detail), schedules with longer fixed inspection 

intervals tend to be excluded because these schedules usually cause higher E(Pnd) 

values than the prescribed value of Pnd,max.  Therefore, upon decreasing the Pnd,max 

value, the optimal schedule adjusts to a shorter inspection interval.  This trend in 

the proposed model agrees with reality where higher safety levels required by a 
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detail generally demand more frequent inspections (i.e., a shorter inspection 

interval). 

(7) Regarding the effect of relative cost of failure, KF, as can be seen in cases (i) and (ii) 

studied, the higher relative cost of failure, KF, has the tendency to require an optimal 

schedule with a shorter fixed inspection interval.  Comparing Figures 6.11 and 6.17 

for example, it can be seen that the higher KF lifts the failure cost curve in the cost-

yint diagram.  The longer the fixed inspection interval employed in the schedule, the 

higher is the cost of failure.  The KF value does not affect the number of inspections 

E(n) of each schedule; hence, the inspection cost curve remains the same when KF is 

changed.  Thus, the total cost curve is governed by the failure cost curve.  The 

raised total cost curve due to the increased failure cost curve, therefore, shifts the 

optimal schedule to one with a relatively shorter inspection interval.  In addition, 

when a higher KF is considered, the optimal NDI technique usually is one with a 

higher crack detectability.  This is because such an NDI technique with a higher 

crack detectability will usually yield a lower failure cost for inspection schedules. 

(8) From the demonstrated box-girder example II, the proposed reliability-based 

scheduling method of Chapter 5 and the POD-based method presented in Chapter 6 

compared for a given ultrasonic inspection technique.  It is found that, for the same 

fracture-critical member, the proposed POD-based method tends to yield a more 

conservative optimal inspection schedule than the schedule generated using the 

reliability-based method.  This is because, conservatively, the POD-based method 

does not consider possible future repair actions, which may extend the fatigue life of 

the detail/member. 
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Chapter 7:  SUMMARY AND CONCLUSIONS 

Fatigue is a random and complex process that can affect the performance of all 

steel bridges.  It can bring about localized failure in a single detail or overall failure of 

the entire bridge.  The disadvantage of estimating the fatigue life of a bridge detail using 

a deterministic approach is that the uncertainty in external and internal factors such as in 

the vehicle-induced fatigue loading, the aggressiveness of environmental conditions, the 

material characteristics, and structural geometry are not treated in a rational manner.  

Accounting for these uncertainties in deterministic approaches can lead to very 

conservative estimates of fatigue lives for the details.  Even when a detail is subjected to 

constant-amplitude stress cycles, the fatigue life of that detail is random.  This 

observation can be verified by the considerable amount of scatter in fatigue test data that 

are employed to establish the design S-N curves in the AASHTO specifications. 

As an alternative to using deterministic approaches, probabilistic approaches 

involving fatigue reliability analysis can be used to help characterize the safety and 

performance of a steel bridge detail subjected to cyclic loading.  For details clearly 

defined under standard AASHTO categories, the AASHTO fatigue reliability approach, 

which employs a limit state function related to number of stress cycles, may be utilized 

for the fatigue reliability calculations.  Variability in the truck-induced fatigue loading 

and uncertainty in internal factors (such as material properties and detail geometry) are 

taken into consideration in the model.  For non-AASHTO type details, the fatigue 

reliability is evaluated by using an approach based on Linear Elastic Fracture Mechanics 

(LEFM) principles and a limit state function related to crack size.  Uncertainties related 

to initial crack size, fatigue-related parameters in Paris’ law as well as in the random 

fatigue loading are taken into consideration in this model.  In both reliability analysis 
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approaches, the variable-amplitude vehicle-induced fatigue loading is modeled by using 

an equivalent stress range. 

Three methods for modeling variable-amplitude fatigue loadings in steel bridges 

were presented in Chapter 3.  These included the stress spectrum analysis, the assumed 

distribution analysis, and the fatigue truck analysis methods.  The objective of each of 

these three methods was to derive the equivalent stress range for a given bridge detail. 

In Chapter 4, the fatigue reliability approaches to be used with an S-N curve 

approach (for AASHTO details) and an LEFM-based approach (for non-AASHTO 

details) were presented.  Fatigue reliability analysis provides a convenient way of 

quantifying the fatigue deterioration of fracture-critical details in steel bridges.  

Variables needed for fatigue reliability analysis with the AASHTO and the LEFM 

approaches were studied and statistics on these variables have been compiled in Chapter 

4 to assist in performing reliability analyses.  After obtaining the fatigue reliability index 

versus number of stress cycles (i.e., β versus N curves), a comparison of the fatigue 

reliability with a target reliability index can provide useful information for planning 

inspection schedules.  The number of stress cycles, Ntarget, that it takes for a detail to 

reach the selected minimum acceptable target reliability index (assumed to be 3.7 in the 

illustrations presented in this dissertation) can serve as a useful early warning point in 

time from which to consider more detailed inspections to avoid large cracks or fatigue 

failure.  This was demonstrated with two case studies.  In the study involving use of 

the LEFM fatigue reliability approach, it was showed how even without precise 

information of an initial crack size, assumed initial crack size distributions based on 

available references (compiled in Chapter 4) can help to estimate the fatigue reliability 

which can then be used to determine a warning point associated with Ntarget accumulated 

cycles after which, more detailed inspections of the detail might be considered.  More 
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importantly, the approaches presented in Chapter 4 were developed in sufficient detail to 

enable their use in the optimal inspection scheduling discussed in Chapter 5. 

Employing fatigue reliability analysis techniques along with means for 

determining the likelihood of needed repairs, the use of event trees, as well as cost 

computations, the problem of fatigue inspection scheduling in bridge details was 

formulated as a mathematical optimization problem.  Through the proposed reliability-

based inspection scheduling procedure, an optimal inspection schedule providing the 

number and times of planned inspection can be obtained that meets reliability and 

inspection interval constraints.  Such an optimization procedure can, thus, yield not only 

the most economical inspection schedule (i.e., lowest cost), but also one that can maintain 

the inspected detail at prescribed safety levels.  In light of the FHWA imposed two-year 

interval between inspections, a study of more rational treatment of inspection times was 

undertaken.  The maximum time between inspections, Tmax, was found to be an 

important constraint that influences the number of inspections, the total cost, and the 

inspection strategy.  When the inspection scheduling is constrained by Tmax, a greater 

number of inspections will typically be necessary which raises the fatigue reliability of 

the detail and, thus, lowers the expected cost of failure.  As shown in the examples 

presented, the proposed scheduling method can be applied to both AASHTO and non-

AASHTO type bridge details.  The effects of relative costs of repair, inspection, and 

failure that make up the total cost, the influence of ADTT uncertainty, and the effect of 

different target reliability levels on inspection scheduling were all studied in detail in 

Chapter 5. 

An increase in relative repair costs tends to yield an optimal schedule with fewer 

inspections because the total costs are governed by the repair costs.  An increase in 
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failure costs tends to yield an optimal schedule with more inspections because total costs, 

especially when the number of inspections is small, are governed by failure costs. 

With regard to the influence of ADTT (traffic) uncertainty, it was shown that with 

increasing variability in the average daily truck traffic, a larger number of inspections is 

required for the optimal schedule.  However, only for steel bridges where the ADTT has 

a COV greater than about 0.30 is it necessary to have significantly more inspections than 

are required for the case when a constant ADTT is assumed. 

A higher target reliability constraint (i.e., more stringent safety requirement) tends 

to exclude schedules with very few inspections because such schedules cannot maintain 

the fatigue reliability of the detail above the higher target reliability over the planned 

service life.  This conclusion is in agreement with an expectation that a detail whose 

failure consequences are greater will require more inspections to ensure the detail meets 

any imposed higher safety standards. 

Importantly, it was seen that a periodic two-year inspection schedule over the 

planned service life as is required by the FHWA for steel bridges will not be the optimal 

schedule for some details if one is interested in keeping costs low as well as maintaining 

safety.  Though such periodic schedule can often keep the fatigue reliability at a higher 

level than some optimal schedules, the larger number of inspections and repairs needed 

over the service life cause an increase in total cost.  The reliability-based fatigue 

inspection strategy presented here yields the optimal inspection schedule while 

maintaining prescribed safety levels for lower costs. 

When the quality of nondestructive inspection (NDI) techniques is taken into 

consideration in fatigue inspections, a probabilistic approach based on actual probability 

of detection (POD) estimates for selected NDI techniques and an LEFM analysis of crack 

propagation can be used to select the optimal NDI technique and associated schedule for 
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a fracture-critical bridge member of interest.  This is demonstrated in Chapter 6 where 

the procedure formulated models the NDI selection problem as a different optimization 

problem (from the one in Chapter 5) in which only inspection and failure costs are 

considered.  Through Monte Carlo simulation schemes, the solution of this optimization 

problem, which is constrained by the maximum allowable probability of not detecting a 

crack (Pnd,max), and by upper and lower bounds on inspection intervals, yields the most 

economical and risk-controlled NDI technique along with an associated schedule for the 

bridge detail of interest.  In the numerical examples presented, it was found that an NDI 

technique with a lower quality normally demands more inspections than one with a 

higher quality to achieve the schedule with the minimum total cost.  Also, by decreasing 

the Pnd,max value (i.e., raising the safety level), the optimal schedule tends to adjust to a 

schedule with a relatively shorter inspection interval because the higher safety level 

demanded for the detail generally requires more frequent inspections. 

When the POD-based scheduling approach and the reliability-based scheduling 

approaches are compared, it was found that, for a fracture-critical member, the proposed 

POD-based method was found to provide a more conservative optimal schedule than the 

reliability-based scheduling method because possible future repair actions on the detail 

are not considered in the POD-based approach. 

In summary, this dissertation has provided methods to evaluate the fatigue 

performance as well as the risk of fatigue failure for fracture-critical members in steel 

bridges.  Two rational methods – one based on reliability analysis and the other on NDI-

related quality (probability of detection) information – have been proposed to permit 

rational inspection and maintenance strategies for steel bridges.  Applying these 

methods to various types of details, bridge authorities can optimally allocate their 

maintenance budgets in an efficient manner without compromising safety. 
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Future research of the presented work can be extended to the following directions: 

(1) The POD-based selection method for NDI techniques only suggests an optimal 

schedule with a uniform inspection interval for the detail of interest.  From 

experience with the reliability-based scheduling method, a fixed-interval schedule 

may not provide the optimal schedule with the lowest total cost for the detail.  

Hence, the POD-based method can be extended to find an optimal schedule that 

allows for non-uniform inspection intervals.  This extended research will demand 

more advanced simulation and optimization techniques. 

(2) The reliability-based inspection scheduling method proposed in this dissertation 

considered only an “as-good-as-new repair” or “no repair” after each inspection, so 

that a basic two-branch event tree analysis (i.e., 2n tree analysis) could be utilized.  

When the repair policy is changed to permit multiple repair actions, the proposed 

scheduling model can be extended to employ a multi-event tree analysis in the 

optimization process. 

(3) Corrosion effects can be incorporated into the proposed reliability-based scheduling 

method to deal with corrosion–fatigue inspection problems in steel bridges. 

(4) The reliability-based scheduling method or the POD-based NDT selection method 

can be extended for use with other degrading civil infrastructure systems. 
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Appendix A 

A.1 DERIVED PROBABILITY DISTRIBUTIONS FOR A FUNCTION OF 
RANDOM VARIABLES 

Consider a function, Y = g(X1, X2,…,Xn) = g(X),  where 

 Y is a response variable; 

 X is a random variable vector composed of X1,X2,…, and Xn; 

 g(X) is a response model, 

then ( ) ( )
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 is the joint PDF of X1,X2,…, and Xn. 

In many cases, an analytical result of FY(y) can be derived as shown in Table A.1. 

 

Table A.1 Basic Random Variable Transformations for Y = g(X). 
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Table A.1 (Continued) Basic Random Variable Transformations for Y = g(X).  

Function Y = g(X) Probability Distribution for Xi Probability Distribution for Y 
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Appendix B 

B.1 RACKWITZ-FIESSLER ALGORITHM IN THE FIRST-ORDER 
RELIABILITY METHOD 

The Rackwitz-Fiessler algorithm for the First-Order Reliability Method (FORM) 

can be described using the following steps: 

(1) Normalize the basic random variables, X, so as to obtain the independent 

standardized normal variables, U.   

(2) Transform the limit state function, g(X), to g(U). 

(3) Guess a design point, x* (original variables), and transform it to standard normal 

space as u*.  For uncorrelated variables, the design point in U-space can be obtained 

as follows: 

 N
i

N
ii

i
xu

σ
µ−

=
*

*  (B.1) 

where µi
N and σi

N are the mean and standard deviation, respectively, of an equivalent 

normal distribution of Xi if Xi is non-normal.  For correlated non-normal variables, 

the Rosenblatt transformation is required to obtain ui
*. 

(4) Evaluate g(u*) and check if | g(u*)| < ε, where ε is specified. 

(5) Evaluate gradients 
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(7) If ( ) ε>*
upg u and the *

upu  is different from that of step (3), go back to step (3) using 
*
upx  as the new design point, where 

 N
i

N
iupiupi ux µσ += *

,
*
,  (B.3) 
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(8) Repeat Steps (3) to (7) until |g(u*)| < ε and u* does not change significantly. 

(9) The reliability index β can be computed as follows: 

 [ ] 2/1  uu ⋅= Tβ  (B.3) 
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Appendix C 

C.1 RAINFLOW COUNTING METHOD FOR STRESS CYCLES 

Once strain time history data have been collected for any detail, a stress-time 

history plot for the detail can be obtained.  Rotate this stress-time history plot so that the 

stress axis is oriented horizontally and the time axis increases downward so that the 

Rainflow Count Method can now applied.  The Rainflow Counting Method proposed by 

Matsuishi and Endo (1968) comes from the idea of letting “rain” drip down and fall on 

the rotated stress-time history line and then employing a stress cycle counting procedure 

by following specified “rain dripping rules.”  Rain is allowed to flow from the top of the 

stress-time history line and must stop flowing in the following three situations 

summarized by Bannantine et al. (1990): 

(1) Rainflow that starts at a local maximum point and falls toward a local minimum point 

must stop flowing at a time point where another local maximum point is greater than 

the local maximum point where the rain flow begins. 

(2) Rainflow that starts at a local minimum point and falls toward a local maximum point 

must stop flowing at a time point where another local minimum point is less than the 

local minimum point where the rain flow begins. 

(3) Rain cannot flow over a “wet” stress-time history segment, which means rain cannot 

encounter a previous rainflow. 

For the example shown in Figure C.1, the first rainflow begins from point 1 and 

stops at point A because point 5 is less than point 1 (Rule (2)).  The second rainflow 

starts from point 2 stops at point B because point 4 is greater than point 2 (Rule (1)).  

The third rainflow that initiats from point 3 ends at point C due to Rule (3).  The fourth 

rainflow starts from point 5 and ends at point D by Rule (2).  The fifth rainflow begins 
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from point 6 and stops at point E due to rule (3).  Each rainflow corresponds to a half of 

a stress cycle and needs to be paired with another half cycle to form a complete stress 

cycle.  With the five rainflows identified in Figure C.1, it is evident that the half cycle 2-

B can be paired with the half cycle 3-C and the half cycle 5-D can be paired with the half 

cycle 6-E.  As can be seen in the figure, some rainflows (half cycles) still cannot be 

paired with others so as to form complete cycles.  A technique of moving the portion of 

the stress history that occurs before the absolute maximum point to the end of the stress 

history can resolve the problem of unpaired half cycles.  This modification to the 

Rainflow Counting Method is illustrated in Figure C.2. 

 

 

Figure C.1 Rainflow Counting Method for a Variable-Amplitude Stress History    
(Hoadley et al., 1982). 
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Figure C.2 Modified Rainflow Counting Method for a Variable-Amplitude Stress 
History (Hoadley et al., 1982). 

 

As shown in Figure C.1, point 4 is the absolute maximum point so the portion 1-4 

of the stress history is shifted downward so as to connect point 10 with point 1 of the 

original history.  A new rainflow counting can now proceed.  By Rule (1), rainflows 4-

a, 8-e and 2-g can be obtained.  Also, according to Rule (2), rainflows 5-b and 7-d can 

be obtained.  Finally, rainflows 6-c, 9-f and 3-h are identified.  Hence, four complete 

cycles are formed by the paired cycles which are (4-a, 7-d), (5-b, 6-c), (8-e, 9-f), and (2-

g, 3-h).  No half cycles are left in the modified Rainflow Counting Method. 
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